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ABSTRACT 

 
The best linear unbiased predictors (the Cluster mean, the Mixed model, Scott & Smith’s 

predictor and the Random Permutation model) of selected important public health variables were 

evaluated in practical settings via simulation studies. The variables corresponded to measures of 

diet, physical activity, and other biological measures. The simulation evaluated and compared the 

mean square errors (MSE) of those four predictors. It estimated variances between subjects and 

days, and response errors for parameters defined over one year period, based on data from a 

large-scale longitudinal study, the Season Study. Then, it evaluated the relative MSE increase 

between predictors of the true subject’s mean in various settings based on theoretical results. In 

addition, a simulation compared the theoretical and the simulated MSE for all four predictors. 

The difference in the MSE between predictors was illustrated in 2D plots. 
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1. INTRODUCTION 

Many clinical studies in health science field have measures of biological and behavioral 

variables on patients at the baseline, and then by the follow up visits. The measures fluctuate over 

time due to seasonal changes. In order to estimate the mean daily saturated fat intake for a 

subject, we usually measure total saturated fat intake on a subject on some sampled days, and 

then average those measurements. We would expect the estimated average based on those 

measurements, sX , to differ from the true subject mean, sm , representing the mean of the true 

saturated fat intake over all days in a year for the subject. We call this mean, sm , the subject’s 

latent value. Therefore, there is a deviation between the estimated subject mean, sX , and the true 

subject mean, sm . This paper is a study of predictors of the true sampled subject’s mean total 

saturated fat intake over the whole year, in a setting where a random sample of subjects is 

selected from a finite population. The purpose of this paper is to discuss the extent to which best 

linear unbiased predictor (The Cluster mean, the Mixed model, Scott & Smith’s predictor and the 

Random Permutation model) provides better predictor. 

We evaluate properties of the predictors for different settings in the context of a large 

observational longitudinal study of seasonal variation in cholesterol levels which we refer to as 

the Season study. This study investigated the nature and causes of seasonal fluctuations in blood 

cholesterol. Our focus was not on seasonal effects, but rather on estimators of patient parameters 

such as the mean total saturated fat intake over the whole year.  

We begin with a brief review of predictors that have been proposed in this setting, 

including the mixed model, Scott and Smith’s Predictor, and the random permutation predictor. 

Then we illustrate the differences in interpretation, in the shrinkage constants, and in the expected 

MSE. Next we describe a variety of situations where prediction of key public health variables is 

of interest. We consider variables on diet intake, physical activity, and cholesterol and blood 
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pressure. For those variables, we describe the accuracy of the predictors with known variances, 

and the results of a simulation study in the practical setting where variances have to be estimated.  

 

2. BEST LINEAR UNBIASED PREDICTORS 

Best Linear Unbiased Predictors (BLUP) were first developed by Goldberger in 1962. 

His emphasis was on prediction of a future observation based on past observations using 

estimated random effects (Goldberger, 1962). Since then, BLUP have been developed to predict 

unobserved values of random variables from observed values of those random variables in the 

sample (Scott and Smith, 1969; Royall, 1976; Robinson, 1991; Searle, Casella and McCulloch, 

1992; Stanek and Singer, 2004). BLUP predictors satisfy the following conditions. First, the 

predictor is a linear function of the sample values. These sample values are realized random 

variables in the sample. Second, the predictor is required to be unbiased. Third, the predictor is 

required to have minimum variance. 

 

2.1 Mixed Models 

A simple mixed model for the response of the thj  selected unit, 1,...,j m=  for the thi  

selected cluster (PSU, primary sampling unit), 1,...,i n=  is given by  

 ij i ijY B Eμ= + +          (2.1) 

where μ  denotes to the expected response over clusters in a population, iB  corresponds to the 

deviation between μ  and the expected response of the thi  PSU, which is a random effect, and 

ijE  represents a random deviation of the thj  units’ response from the expected response of the 

thi  PSU. The assumptions are that ( )20 , iB iid N σ: and ( )2 0 , ij iE iid N σ: (Searle and 

McCulloch, 1992). 
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In model (2.1), we assume that variances are known, and the estimator of the fixed effect 

is the weighted least square estimator, 
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 the variance ( 2s ) is the variance between clusters, i.e. 2var( )iB s= , and 

the variance ( 2
es ) is variance within cluster, i.e. 2var( )ij eE s= ,  the parameter m  is the number of 

sampled units per sampled cluster. Then the predictor of the latent value of the thi  realized PSU 

( )ˆˆ ˆi ip Bm= +  is a linear combination of m and the predictor of iB  given by 

  ˆ ˆ ˆ( )i ip k Ym m= + -                                                                       (2.3) 

(Searle and McCulloch, 1992 and Stanek and Singer, 2004). 

 

2.2 Scott and Smith’s Predictor 

Scott and Smith (1969) proposed a two-stage sampling model to predict linear combinations 

of elements of a finite population from a super-population model. The finite population consisted 

of N  clusters, each with iM  units. At the first stage, n  clusters were selected from N  clusters. 

At the second stage, m distinct units were selected from each of the n  selected clusters. They 

assumed that: 

(1) The iM  elements, ijY s  in the thi cluster, were independent observations from a 

distribution with mean im and variance 2
iσ . 
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(2) The cluster means 1μ , …, Nm  were uncorrelated from a distribution with mean m and 

variance δ 2. 

The assumptions lead to a multivariate distribution for the elements with ( )ijE Y μ=  and 

( ) 2 2

2

cov ,  when ;

 when ;
0  otherwise. 

ij kl iY Y i k j l

i k j l
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= + = =

= = ≠
=

                                                                          (2.4)  

where  2d  is variance between clusters, and 2
is  is variance within a clusters. Scott and Smith 

assumed the population was a realization of the super-population, and a predictor became a 

linear function of the finite population units. Based on minimizing the expected MSE of a 

linear predictor, they developed the predictor  
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This predictor is for PSU i in the sample. If the PSU is not in the sample, the mean is predicted by 

ˆ ˆ *.ip μ=  The first term in the predictor (2.5) is the sample mean for the thi  PSU in the sample. 

The second term is the predictor of the remaining secondary sampling units (SSUs) for the PSU. 

The weight factors were the ratio of observed SSUs and the unobserved SSUs. If PSUs were not 

in the sample, the predictor simplified to be the weighted sample mean (Stanek and Singer, 2004). 

 

2.3. The Finite Population Response Error Model and Parameterizations  

A third predictor was developed based on a two stage random permutation of the 

population (Stanek and Singer, 2004). Assume that a finite population is composed of N clusters, 
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indexed by 1,...,s N= , and each cluster contains a listing of M units, indexed by 1,...,t M= . 

Assume the thk  response for unit t  in cluster s  is given by  

stk st stkY y W= + .       (2.6) 

where sty  donates a fixed constant representing the expected response for the unit, and 

stkW represents response error (with zero expected value). Model (2.6) is referred to as a response 

error model.    

If  2
stσ  represents the response error variance for unit t  in cluster s , then the average 

response error variance is given by 
2
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∑ , respectively. The deviation of the latent 

value of cluster s , sμ , from the population mean is represented as ( )s sβ μ μ= − ;  the deviation 

of the expected response for unit t  (in cluster s ) from the latent value of cluster s  is donated 

as ( )st st syε μ= − . Then, the response for unit t  in cluster s  is given by  

st s sty μ β ε= + + .            (2.7) 

Assuming ( )1 2 ... Ny y y y
′′ ′ ′=  where ( )1 2 ...s s s sMy y yy ′= , model (2.7) 

can be summarized for all units as  
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   μ= + +y X Zβ ε             (2.8) 

where N M= ⊗X 1 1 , N M= ⊗Z I 1 , 1 2 N' (   ... )b b b b= . None of the terms in model (2.8) are 

random variables. a1  is an 1a× column vector of ones, and ε  is defined similarly to y .     

 

2.4 Two Stage Random Permutation Model 

 Let us index a cluster in a permutation by 1,  2,  ...,i N= . A random variable isU  is one 

when PSU i is cluster s, zero otherwise. We define the units in a cluster as secondary sampling 

units (SSU). Similarly, a random variable ( )s
jtU  takes value of one when SSU j in cluster s is unit 

t, and zero otherwise. When all permutation lists are equally likely, the random vector 

1 N ( , ... , )'Y Y Y=  is a random permutation of the population, and each element of 

1 i2 i3 iM = (Y  Y  Y  ... Y )'Yi i . The random variable representing the thj  SSU within the thi  PSU, 

ijY , in the permutation is as follows: 

( )

1 1

N M
s

ij is jt st
s i

Y U U Y
= =

= å å       (2.9) 

where isU  takes a value of one when PSU i is cluster s, and a value of zero otherwise, and jtU  

takes on a value of one when SSU j in cluster s is unit t, and zero otherwise. 

We assume a total of m  elements in each of n clusters are selected by a two-stage 

sampling scheme from a population. The population total is composed of three components: 1) 

the total for observed elements; 2) the total for unobserved elements in sampled clusters; and 3) 

the total for unsampled clusters. Stanek and Singer (2004) developed an unbiased predictor of a 

realized PSU mean, which was a linear combination of the random variables in the sample. The 

predictor minimized the expected values of the mean square error (MSE). If there was no 

response error, the mean of PSU i can be predicted by 
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( ) ( )( )ˆ  1    i i iT fY f Y k Y Y= + − + −                  (2.10) 

where 
mf
M

=  (sampled fraction), iY  is the mean of thi  selected cluster, Y  is the overall mean 
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2.5 Comparison Between Predictors 

Table 1 presents the predictors illustrated previously. The predictors appears to be 

algebraically similar, but their contents are different. Each predictor is a weighted linear 

combination of two terms. The first term predicts the latent values of the SSUs in the sample. The 

second term predicts the latent values for the remaining SSUs not in the sample. Unlike other 

predictors, the mixed model predictor is a predictor of the unobserved SSUs for a PSU, and it 

places all the weight on the second term.  

Table 1.  Predictors of the latent value of PSU i  when i n≤  in two-stage cluster sampling 
(Stanek, 2003) 
___________________________________________________________________ 
Model   Predictor 
___________________________________________________________________ 
Cluster Mean               ( )ˆ                         1                   i i iP fY f Y= + −  

Mixed Model           ( )( )ˆ ˆ ˆ                                                i i ip k Yμ μ= + −  

Scott & Smith           ( ) ( )( )* * *ˆ ˆ ˆ                        1i i i iP fY f k Yμ μ= + − + −  

Random Perm.           ( ) ( )( )ˆ                         1    i i iT fY f Y k Y Y= + − + −  

RP + Resp. Err.           ( )( ) ( ) ( )( )* *ˆ 1   i r i iT f Y k Y Y f Y k Y Y= + − + − + −  

___________________________________________________________________ 
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In these expressions, 
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m
ss s= - . Note that in the Mixed Model, or in Scott and 

Smith’s Predictor without response errors and assuming equal unit variances for each cluster, the 

expression for 2
iσ  is equal to ( )2 2

e rσ σ+ (Stanek, 2003). 

Scott and Smith’s predictor and the random permutation model are nearly identical. 

However, the differences between the predictors is due to differences in variance components and 

shrinkage constants (Stanek and Singer, 2004). Because the random permutation model permuted 

PSUs, it uses a single SSU component of the variance representing the average of the SSU within 

cluster variance. Therefore, the variance within a cluster is 2
es  (as supposed to the cluster 

specific components, 2
is , in the Scott and Smith’s predictor). Similarly, the variance between 

PSU in the random permutation model is defined as
2

2 e

M
σσ σ∗2 = − , as opposed to 2d  in Scott 

and Smith’s predictor. We note that the assumption of Scott and Smith’s predictor for the 

variance components does not correspond to the variance components that derived from 

permutation clusters and units in a finite population (Stanek and Singer, 2004). 

 With additional assumptions that the variance within a cluster is identical for all clusters, 

2
es  and the response error variance is the same for all units and equal to 2

rs , and 2 2 2
i e rσ σ σ= + , 
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then the shrinkage constants *
2 2i i
e r

mk k
m

σ
σ σ σ

2

2= =
+ +

. Each predictor in Table 1 can be 

represented as ( )ˆ
iT Y c Y Y= + − . Table 2 shows values of c  for Predictors 

( )ˆ
iT Y c Y Y= + − of the Latent Value of PSU i  when i n≤  in Two-stage Cluster Sampling 

with Homogeneous Unit and Response Error Variances. As shown in Table 2, the differences 

between the predictors are due to the contents of shrinkage constants. 

Table 2.  Values of c  for predictors ( )ˆ
iT Y c Y Y= + − of the latent value of PSU i   

________________________________________________________________________ 
Model      
Mixed Model                         MM ic k=    

Scott & Smith    ( )     1SS ic f f k= + −  

Random Permutation.   ( )     1RPc f f k= + −  

Random Permutation with  ( ) *1RPR t tc f f kρ ρ= + −  
Response Error 

________________________________________________________________________ 

 
 
2.6 Simulation 

 A simulation study program was developed by Stanek (2003a) to evaluate the predictors 

in two-stage cluster sampling contexts in different settings. The simulation study consisted of 

three sub-modules, creation of a finite population, selection of two stage samples from the finite 

population, and comparison of the simulated mean square errors (SMSE) and the theoretical mean 

square errors (TMSE) of the predictors.  

 First, the population was defined by a set of values based on percentiles of a hypothetical 

distribution. We used percentiles of such distribution to create a population of units and clusters. 

The basic distributions from which the finite populations were generated were normal. Different 

distributions could be selected for units and clusters. However, we used the same distribution 

(normal) to generate the unit effect for all clusters. 
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 For each simulation, the population consisted of N clusters with M units per cluster. Each 

individual cluster parameter was represented by the latent value for cluster s, sμ  and their mean, 

byμ . The variance between clusters, 2σ , was fixed, and then N initial values evenly spaced were 

generated based on the percentiles of the specified distribution. These values were the initial 

values of the cluster parameters. Because the number of clusters in the population was finite, the 

average of the cluster parameters would not necessarily equal to be the population mean, μ . The 

mean of cluster parameters was redefined by centering them at μ  and re-scaling their values so 

that the variance matched 
2

2

1

( )
1

N
s

s N
μ μσ

=

−
=

−∑ .  

 Next, we generated unit effects for the M units for each cluster. These effects were to be 

forced to average to zero. In addition, the unit effects were generated using percentiles of a 

specified distribution. The distribution was normal. The variance of the unit effects may be either 

set to be constant for all clusters or vary proportionally to smax 0.1,  μ
μ

⎛ ⎞
⎜ ⎟
⎝ ⎠

. The parameters for 

the cluster were formed by adding the unit effect to the cluster mean and were represented by sty . 

The variance of the unit parameters in cluster s was given by 
2M

2 st s
s

t=1

(y - )  
M-1
μσ = ∑ . The common 

within cluster variance, represented by 2
eσ , was equal to the average within cluster variance, 

2
2

1

N
s

e
s N
σ

σ
=

=∑ . Unit effects were re-scaled so that they had zero mean for each cluster, and their 

average variance was equal to be 2
eσ . 

   The parameters in the simulation programs were the number of clusters in the population 

(N), the number of units in a cluster (M), the number of clusters in the sample (n), the number of 

units in a sampled cluster (m), the population mean (μ ), the variance of cluster means ( 2σ ) , the 
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variance of units in a cluster ( 2
sσ ), the response error variances ( 2

rs ), the cluster distribution, 

and the unit distribution. 

 We adopted and modified this simulation for this research. The average differences 

between the predicted PSU mean and the true PSU mean, and the MSE were estimated based on 

known and unknown variances. If variance components were known, there were eight different 

assumptions about mixed model, leading to eight mixed model predictors, and eight analogous 

predictors based on Scott & Smith’s model. Also we obtained the predictor corresponding to the 

cluster mean, and to the Random Permutation model.  This resulted in total to 18 predictors based 

on known variances.  For each predictor, we estimated the MSE by evaluate the average squared 

deviation from the realized cluster mean over many samples (where each sample corresponds to a 

trial). If variance components were unknown, Stanek (2003a) proposed two different methods of 

estimating variance components, which lead to two mixed model predictors, two Scott and 

Smith’s predictors, and two random permutation predictors. 

 

3. MATERIALS AND METHODS 

3.1 Season Study 

Data sets for this project were from the Season Study and provided by Dr. Ockene. The 

variables included cholesterol, diet, light, activity and other variables with either single or 

multiple measurements on each subject. Data were collected from volunteers (N=5000) recruited 

from Fallon Health Maintenance Organization (HMO) members with age between 20 and 70 year 

old. Patients were enrolled between 1994 and 1998. Measurements were conducted on 

consecutive three-month intervals over a twelve-month period on each subject (Stanek and 

Singer, 2004). The data sets consisted of three sub-data sets: quarterly data, 24-hour recall data, 

and baseline data.   

The Quarterly data contained lipid data, 7DDR (7 day dietary records based on 
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subject recall, 1 each per quarter), and hormonal data. Measurements were made on a simple 

random sample of 1 day ( 1m = ) during a quarter (3 month period, 90M = ). The 24-hour recall 

data contained physical activity, diet, and light exposure. They were measured on 2 randomly 

selected weekdays and one randomly selected weekend day per quarter ( 3,  90)m M= = . 

Nutrient variables evaluated were total saturated fat intake, total fat, total carbohydrate, and 

cholesterol. Physical activity variables were measured to evaluate the 1-year average of reported 

physical activity energy expenditure (MET-hours/day), by activity domain (i.e., household, 

occupational and leisure time) and intensity. Standard metabolic equivalent (MET) values were 

used to calculate estimates of physical activity energy expenditure. A weighted sum of daily 

physical activity energy expenditure (MET-hours/day) was computed using the time reported 

(hours/day) in activity of each intensity and the following MET weights: light activity, 1.5 METs; 

moderate activity, 4.0 METs; vigorous activity, 6.0 METs; and very vigorous activity, 8.0 METs. 

One MET-hour/day was approximately equivalent to 1 kcal/kg body mass/hour or to the resting 

metabolic rate of a person weighting 60-70 kg (Matthews, et al., 2001). Physical activity variables 

to be evaluated were light intensity activity, moderate intensity activity, and vigorous intensity 

activity. Up to 3 days of 24-hour activity were collected per quarter. The baseline data included 

demographic factors, such as age and gender.  

Both subjects and dates of measurements over a quarter were not randomly selected. 

Subjects participating in this study were assumed to be comparable to a simple random selection 

from a finite population. Therefore, two-stage Best Linear Unbiased Predictors in this study were 

assumed to be applicable for this dataset. 

 

3.2 Estimating Variance Components 

Variance components such as variance between clusters (subjects), residual variance (a 

combination of variance between units (days) and response error) for one year (i.e. M=365) were 
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estimated using a mixed model with restricted maximum likelihood method using the Season’s 

study data. The variance between days 2( )ds  was calculated by subtracting response error 2( )es  

from the residual variance. The intra-class correlation of repeated measures on a unit ( tr ), and 

the intra-class correlation of units in a cluster ( sr ) were estimated based on the variance 

components 
2 2
d s

2 2 2 2
d s

. .  = ,   =  .t s
e d

i e s sr r
s s s s

æ ö÷ç ÷ç ÷ç ÷ç + +è ø
 Response errors of variables are based either 

on literature reviews or through simulations with coefficient variations (Table 4). For example, 

Hegsted and Nicolosi (1987) estimated response error for total serum cholesterol was 225 

(mg/dl).  

If response errors of the variables were not available in the literature, they were estimated 

by simulating two responses on each subject. First, response error of a measure on each subject 

was calculated based on assumed coefficient of variation. Then, the average response error was 

estimated by pooling individual response error on each subject. Two simulated responses were 

based on empirical measures of each subject at the quarter 1 of the quarterly data set (cbdq6) in 

the Seasons Study and using the coefficient of variations assumed (Table 4).  

We simulated two responses of weight for each subject with random normal function 

generator given by  

 sd sd =  + *c.v.*rannor(seed)sdkY m m           (3.1) 

where sdkY  represents weight of subject s at the day d and at the thk measure, sdm  denotes the true 

weight of subject s on a day d, which is assumed to be the mean weight of subjects at quarter 1 of 

quarterly data in Season Study, i.e. 78.44 (kg), the term rannor(seed) is a random number 

function based on a normal distribution. sd*c.v.m  is the possible response error allowed to be 

different for different subjects and days. The response error of measures in weight was estimated 

using a mixed model (see Appendix A).  
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A simple mixed model, which was used to estimate variance components for a variable, 

for the response of the thj  selected day, = 1,...,m, j for the thi  selected subject,  = 1,...,n, i is 

given by  

i ij ijk =  + B  + D  + EijkY m          (3.2) 

where μ  denotes to the expected response over subjects in a population, iB  corresponds to the 

deviation between μ  and the expected response of the thi  selected subject. ijD  indicates the 

deviation between expected response of  the thi  selected subject at the thj  selected day, ijY , and 

the expected response of subject i , and ijkE  represents the random response error of measures for 

the thi  selected subject and at the thj  selected day. ijk,   and Ei ijB D are random. The assumptions 

are that ( )2 0 , iB iid N σ: . 

Variables chosen to estimate variance components using the mixed model (3.2) were 

body composition and lipid variables (body mass index, systolic blood pressure, diastolic blood 

pressure, LDL, HDL, total cholesterol, triglyceride, weight), nutrient variables (total saturated fat 

intake, total fat intake, saturated fat as percent of total calories, total fat as percent of total 

calories) and physical activity (light intensity activity, moderate intensity activity and vigorous 

intensity activity). The quarterly data contained lipid data, collected by one measure per subject 

per quarter, and nutrient data, collected by 7 day dietary recall with 1 each per quarter,  and 

nutrient and physical activity data, collected by 24 hour recall telephone interview given up to 3 

days per quarter. 

One of the assumptions to estimate variance components for three sets of variables was 

that a subject was selected at random. All subjects with five measures (one per quarter) were 

retained. The variance components of lipid, nutrient variables (variance between subjects, and the 
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residual) with a period of 365 days were estimated with the mixed model shown in (3.2) (see 

Appendix B).  

Similarly, 365-day-period variance components of nutrient and physical activity variables 

collected by 24-hour recall were estimated again with the mixed model illustrated in (3.2) (See 

Appendix B). Because a residual error was composed of variance between days and a response 

error, a 365-day-period variance between days was the deviation between the residual error and 

response error.  

All analyses were performed using SAS 8.02. 

 

3.3 The Simulation Study 

 The simulation study program addressed in Section 2.6 was modified to compare the 

performance of Best Linear Unbiased Predictors. Modification included calculating the relative 

MSE increases between predictors of the true subject mean in various settings with or without 

known variance components. The relative MSE is defined as 1 2 100%
2

mse mse x
mse
−⎛ ⎞

⎜ ⎟
⎝ ⎠

, where mse1 

is either the theoretical or the simulated MSE of the predictors, the predictors are the Cluster 

mean, the Mixed model, Scott & Smith’s predictor; mse2 is the theoretical MSE of the Random 

Permutation model. In addition, modification enabled us to compare the theoretical and the 

simulated MSE for all four predictors with or without known variance components. Since there 

were eight possible ways the variance components for the Mixed model and Scott & Smith’s 

predictor could be defined when variance components were known, it lead to eight Mixed models 

and eight Scott & Smith’s predictors. The eighth mixed model and the eighth Scott & Smith’s 

predictor were used to compare the performance with other predictors. When variance 

components were unknown for those two predictors, there were two methods of estimating 

variance components leading to two Mixed models and two Scott & Smith’s predictors. The 
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second Mixed model and the second Scott & Smith’s predictor were used to compare the 

performance with the Cluster mean model and the Random Permutation  predictor. 

 

4. RESULTS 
 
4.1 Estimate Variance Components 
 

Table 4 shows the parameters for coefficient of variation (c.v.) and the mean values of 

the variables of interest. The process of estimating the coefficient of variation and the response 

errors of variables is described next. 

Let us consider an example of estimating intra-individual variability of physical activity 

level in minutes on one day for a subject. Suppose that two measures of physical activity on the 

same day were collected for each subject. Each subject was asked twice the number of minutes 

he/she exercised during the day. Suppose, for example, that two responses of the first subject are 

24 and 36 minutes. Also, suppose that the actual number of minute the first subject exercised is 

30 minutes. Similarly, for the second subject, the two responses are 16 and 24 minutes. The actual 

time the second subject exercised is 20 minutes. Then, the range (or interval) of two responses for 

each subject accounts for 40% of the actual values. If such data were available for n  subjects, 

they could be used to estimate the variance components of physical activity level. Because such 

data are not available, we assume that a 95% confidence interval for response has a width of 40% 

of the actual minutes. 

Then, the thk  response for subject s  in day d , sdkY  is given by 

sdk  =  + E                       sdk sdY m                                                    (4.1) 

where sdm  represents the true amount of physical activity of subject s  on a day d , which is 

assumed to be the mean amount of physical activity of subjects at quarter 1 of quarterly data set 

(cbdq6) in the Seasons Study. sdkE  denotes the response error. One standard deviation of 

response errors of physical activity level of subject s  at day e,  ( )d s  is 0.1 sdm  as a result of 
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95% C.I. width assumption because sd sd0.2*2* /4 =0.1*es m m= . Therefore, a within-subject 

coefficient of variation (c.v.) of physical activity level is equal to be 0.1 because sd. . = /ec v s m .  

Similarly, we can estimate the response errors by simulations with assumed coefficient of 

variance of lipid variables. Let us estimate the coefficient of variances of weight and body mass 

index, followed by the process of simulations.  

The thk  response of weight for subject s , skY , is given by 

sk  =  + E                       sk sY m                                                    (4.2) 

where sm  represents the true weight measure of subject s . skE  denotes the response error of 

weight. Two responses of weight measures are assumed to be 0.25 kg above or 0.25 kg below the 

true weight. Therefore, the standard deviation of response errors of weight measures of subject s  

at day d is 0.25*2/ 4 0.125= . The sm  is assumed to be equal to the mean weight of subjects at 

quarter 1 of quarterly data set (cbdqs6) in the Seasons Study, i.e. 78.44 kg. Then a within-subject 

coefficient of variation (c.v.) of response error of weight is equal to be 0.0016 because 

sd. . = / 0.125/ 78.44ec v s m = .   

Next, we estimate the coefficient of variance of body mass index. Suppose the true 

subject height ( sm ) is assumed to be 1.7 meter. Then the thk  response of  body mass index for 

subject s  is given by  

  sk
2 2 2

E +                
1.7 1.7 1.7

sk sY m=                                                     (4.3) 

We assume height can be measured to the nearest centimeter (i.e. 4*standard deviation =2 cm; i.e. 

two height measures can be 1.69 meters and 1.71 meters). The maximum response error for body 

mass index is
2

2
2

0.25var 0.0875
1.69 2.8561

skEæ ö æ ö÷ ÷ç ç= =÷ ÷ç ç÷ ÷çç è øè ø
. Therefore, the standard deviation of response 

errors of body mass index measures of subject s  is 0.0875. The body mass index of subject s  is 

assumed to be the mean body mass index of subjects at quarter 1 of quarterly data set (cbdqs6) in 
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the Seasons Study, i.e. 27.34 kg/m2. Then a within-subject coefficient of variation (c.v.) of 

response error of body mass index is equal to be 0.0032 because sd. . = / 0.0875/ 27.34.ec v s m =  

Table 5 shows variance components of lipid, nutrient and physical variables and intra-

class correlation of cluster and unit at one year. As indicated in Table 5, the variance of lipid 

variables such as total cholesterol between subjects for the time period of 365 days is 1463.33 

mg/dl. The residual of variance components (i.e. day to day and response errors) of total 

cholesterol is 286.32 mg/dl. Because the response error of serum cholesterol is 225 mg/dl, the 

amount of total cholesterol between days for the time period of 365 days is 61.32 mg/dl. Table 5 

also reports that the intra-class correlation of units in a cluster (subject), and of repeated measures 

on a unit (day) for total cholesterol at the time period of 365 days are 0.960 and 0.214.                                                    

 In addition, Table 5 indicates that a 365-day-period variance of nutrient variables 

collected using 24 hour recall such as total saturated fat intake (SFA) and residual error are 

113.24 gm and 169.57 gm. Because response error of total SFA is 151.01 gm, a 365-day-period 

variance of total SFA between days is 18.56 gm. Furthermore, Table 5 shows that the intra-class 

correlation of units in a cluster (subject), and the intra-class correlation of repeated measures on a 

unit (day) for total SFA at the time period of 365 days are 0.859 and 0.109. 

Table 6 shows cluster and unit intra-class correlations of some health variables at 365-

day period in tabular format. The performance of the predictors (the Mixed Model, Scott and 

Smith’s Predictor, the Cluster Mean Model, and the Random Permutation Model) were evaluated 

by comparing the simulated mean square errors (SMSE) and the theoretical mean square errors 

(TMSE) of the models at two common settings of cluster and unit intra-class correlations 

( s t0.67,  0.83;  =0.67, =0.2s tr r r r= = ). 

 
4.2 The Simulation Results 
 
4.2.1 Known Variances And Equal Within Cluster Variances 
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Figures 1 and 2 illustrate the percent increases in the difference between the simulated 

mean square errors (SMSE) and the theoretical mean square errors (TSME) of the predictors (the 

Mixed Model, Scott and Smith’s Predictor, the Cluster Mean Model, and the Random 

Permutation Predictor) under an assumption of known variances, and with equal within-cluster 

variances in two common settings of cluster and unit intra-class correlations shown in Table 6 

( s t0.67,  0.83;  =0.67, =0.2s tr r r r= = ) and at two simulation runs (1000, 10000). With 1,000 

trials, the relative difference is between -2.5% and 3.5%. When the unit sampling fraction (f) 

increases to 0.7, the relative difference reaches the peak (Figure 1, top). With 10,000 trials in both 

Figures 1 and 2, the relative differences have been reduced between -1.0% and 1.0%. In addition, 

there are no obvious peaks in 10,000 trials as occurs with 1,000 trials. Furthermore, with 10,000 

trials, there are no predictors showing the consistent results with the smallest relative increment in 

SMSE over its TMSE through all the unit-sampling fractions.  

 Figure 3 shows the percent increases in the theoretical mean square errors (TMSE) of 

predictors (the Mixed Model, Scott and Smith’s Predictor, and the Cluster Mean Model) over 

TMSE of the Random Permutation Model under an assumption with known variances, and with 

equal within-cluster variances in two common settings of cluster and unit intra-class correlation 

coefficients ( s t0.67,  0.83;  =0.67, =0.2s tr r r r= = ) and at one simulation (number of 

runs=10,000). Several patterns emerge from Figure 3 (top), where both cluster and unit intra-class 

correlation coefficients are larger ( t0.67,  =0.83).sr r=  First, the Random Permutation Predictor 

has the minimum TMSE, followed by Scott and Smith’s predictor. Second, as the unit sampling 

fraction becomes large, the magnitude in percent increment in TMSE of the Mixed Model over 

TMSE of the Random Permutation Predictor increases, but the magnitude in percent increases in 

the TMSE of the Cluster Mean Model over the TMSE of the Random Permutation Predictor 

decreases. When unit-sampling fraction gets over 0.63, the Mixed Model performs worse than the 

Cluster Mean Model. However, several different patterns emerge from Figure 3 (bottom), where 
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unit intra-class correlation is smaller ( 0.67, 0.2).s tr r= =  First, the Random Permutation 

Predictor has the minimum TMSE, but followed by the Mixed Model instead of Scott and 

Smith’s Predictor. Second, as the unit-sampling fraction becomes large, the magnitude of 

increment in TMSE of Scott and Smith’s predictor over TMSE of the Random Permutation 

Predictor increases gradually, but the magnitude of increment in the TMSE of the Cluster Mean 

Model over the TMSE of the Random Permutation Predictor decreases dramatically. When the 

unit sampling fraction reaches 0.9, however, the Cluster Mean Model still has higher percent 

increment in its TMSE over TMSE of Random Permutation Predictor than Scott and Smith’s 

Predictor. 

 Figure 4 illustrates the percent increment in the simulated mean square errors (SMSE) of 

the predictors over the TMSE of the Random Permutation Predictor under an assumption with 

known variances, and with equal within-cluster variances in two common settings of cluster and 

unit intra-class correlations ( s t0.67,  0.83;  =0.67, =0.2s tr r r r= = ) and at one simulation 

(number of runs=10,000). There are similar patterns between Figure 4 (top) and Figures 3. For 

example, when the unit-sampling fraction gets over 0.6, the Cluster Mean Model performs better 

than the Mixed Model. However, TMSE of the Random Permutation Model is not always smaller 

than the SMSE of Scott and Smith’s predictor as shown in Figure 3, the Cluster Mean Model 

performs much worse than other predictors in Figure 4 (bottom). The ratio of increment in SMSE 

of the Cluster Mean Model over TMSE of the Random Permutation Predictor is over 95% when 

unit-sampling fraction is 0.20. As the unit sampling fraction increases, the ratio gets smaller. But 

it is 20% when the unit sampling fraction (f) increases to 0.9.  

 
4.2.2 Unknown Variances And Equal Within Cluster Variances 
  

Figure 5 illustrates the percent increases in the difference between the simulated mean 

square errors (SMSE) and the theoretical mean square errors (TSME) of the predictors (the Mixed 

Model, Scott and Smith’s Predictor, the Cluster Mean Model, and the Random Permutation 
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Model) under an assumption with unknown variances, and with equal within cluster variances in 

two common settings of cluster and unit intra-class correlations 

( s t0.67,  0.83;  =0.67, =0.2s tr r r r= = ) respectively and at one simulation (number of 

runs=10,000). Several patterns emerge from Figure 5 (top).  First, the percent increment in SMSE 

over TMSE of four predictors (excluding the Cluster Mean Model) decreases as the unit sampling 

fraction increases.  Second, the Mixed Model has the highest increment in SMSE to TMSE in all 

unit-sampling fractions and over all other predictors. It reaches over 30% when the unit-sampling 

fraction is 0.2, and deceases to 8% when the unit-sampling fraction gets to 0.9. Among the 

Cluster Mean Model, Scott and Smith’s Predictor, and the Random Permutation Predictor, the 

Cluster Mean Model has the smallest increment in SMSE over TMSE. The ratio of percent 

increment in SMSE to TMSE of Scott and Smith’s predictor over the ratio of the Random 

Permutation Model is about 2 when the unit-sampling fraction is 0.2. The ratio decreases to 1 as 

the unit-sampling fraction gets 0.9.  

Similar patterns emerge form Figure 5 (bottom) when 0.67sρ = , and 0.2tρ = . However, 

there are some differences. One of them is that the difference in percent increment in SMSE 

relative to TMSE between Scott and Smith’s predictor and the Random Permutation Predictor 

depends on the unit-sampling fraction (f). When f is less than 0.35, Scott and Smith’s predictor 

has higher increment in SMSE over TMSE than the Random Permutation Predictor. However, 

when f is greater than 0.35, the Random Permutation Predictor has higher percent increment in 

SMSE to TMSE than Scott and Smith’s Predictor. 

Figure 6 illustrates the percent increases in the simulated mean square errors (SMSE) of 

the predictors over the TMSE of the Random Permutation Model under an assumption with 

unknown variances, and with equal within-cluster variances in two common settings of cluster 

and unit intra-class correlations ( s t0.67,  0.83;  =0.67, =0.2s tr r r r= = ) and at one simulation 

(number of runs = 10,000). Several patterns appear in Figure 6 (top). First, the TMSE of Random 
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Permutation Predictor is less than SMSE of other predictors almost all the times. Second, Scott 

and Smith’s predictor has the smaller percent increase in SMSE to TMSE of the Random 

Permutation Predictor than the Mixed Model and the Cluster Mean Model most of times. Third, 

the increment in SMSE of the predictors over TMSE of the Random Permutation Predictor 

declines as the unit sampling fraction (f) increases. However, when unit intra-class correlation 

( )tρ is 0.83 (Figure 6, top), the Mixed Model has the highest percent increase in SMSE to TMSE 

of the Random Permutation Predictor, followed by the Cluster Mean Model. When unit intra-

class correlation ( )tρ is 0.2 (Figure 6, bottom), the Cluster Mean Model has the highest percent 

increase in SMSE to TMSE of the Random Permutation Predictor, followed by the Mixed Model. 

Finally, when unit intra-class correlation ( )tρ  is 0.2 in Figure 6 (bottom), the percent increases in 

SMSE of all four predictors over TMSE of the Random Permutation model is about 175% at the 

unit-sampling fraction of 0.1; however, when unit intra-class correlation ( )tρ  is 0.83 in Figure 6 

(top), the percent increases in SMSE of all four predictors over TMSE of the Random 

Permutation model is about 47%. That may imply that the higher response errors in measures of 

the variables, the bigger the percent increases in SMSE to TMSE of the Random Permutation 

model when the unit-sampling fraction is very lower such as 10%. 
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Table 4. The parameters for the coefficient of variation of some health science variables 
 

 
Variables 

Collection 
interval C.V. 

 
Mean 

Source and assumptions 
 

24hr 0.10  
25.19 gm 

A 95% confidence interval  for response has 
a width of 40% of the true response. Total SFA 

 
 7ddr 0.20 

 
29.02 gm 

A 95% confidence interval  for response has 
a width of 80% of the true response. 

24hr 0.10 
11.20 % of 
calories 

A 95% confidence interval  for response has 
a width of 40% of the true response. Percent of 

SFA 
7ddr 0.10 

12.50 of 
% calories 

A 95% confidence interval  for response has 
a width of 40% of the true response. 

24hr  0.10 
 
70.01 gm 

A 95% confidence interval  for response has 
a width of 40% of the true response. Total Fat 

Intake 
7ddr 0.20 

 
85.62 gm 

A 95% confidence interval  for response has 
a width of 80% of the true response. 

24hr 0.10 31.1 % 
calories 

A 95% confidence interval  for response has 
a width of 40% of the true response. Percent Fat 

Intake 
 7ddr 0.10 36.91 % 

calories 
A 95% confidence interval  for response has 
a width of 40% of the true response. 

Light 
intensity 
activity 

24hr 0.10 
 
0.21  
MET hr 

A 95% confidence interval  for response has 
a width of 40% of the true response. 

Moderate 
intensity 
activity 

24hr 0.10 
 
0.86  
MET hr 

A 95% confidence interval  for response has 
a width of 40% of the true response. 

Vigorous 
intensity 
activity 

24hr 0.10 
 
0.87 
MET hr 

A 95% confidence interval  for response has 
a width of 40% of the true response. 

Body weight Quarterly 0.0016 
78.44  
kg 

absolute difference between two responses 
is 0.25 kg, 

Body mass 
index Quarterly 0.0032 

27.34  
kg/m2 

absolute difference between two responses 
is 0.25 kg, 
the accuracy of height measures is 0.01 
meter. 

TG Quarterly 0.226 140.90 mg/dl Smith et al, 1993.  

HDL Quarterly 0.074 
47.28 mg/dl 

Smith et al, 1993. 

LDL Quarterly 0.09 144.02 mg/dl Smith et al, 1993. 

SBP Quarterly 0.03 
119.83 mm Hg Andre et al., 1987. Cavelaars et al., 2004. 

Ripolles et al., 2001. 

DBP Quarterly 0.032 
77.15  
mm Hg 

Andre et al., 1987. Cavelaars et al., 2004. 
Ripolles et al., 2001. 

TC Quarterly 0.0688 
 
218.58 mg/dl Hegsted and Nicolosi (1987) 

 
    (Continued on next page) 
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Table 4. Continued 
 
*24hr: Based on a 24 hours recall telephone interview given for up to 3 days in a quarter.  
*7ddr: 7-day dietary records based on subject recall, 1 each per quarter.   
*based on Season’s study data unless otherwise noted.   
Source: thesis04py_table4.sas 
 
Table 5. Variance components of some health variables and intra-class correlation (ICC) of 
cluster and unit 
_______________________________________________________________________ 
Variables       Collection   Time   Variance components         ICC 
                  Interval Period Subject days resp. error Cluster Unit 
_______________________________________________________________________ 
% FAT(%calories)      7ddr  365    39.79    10.99   15.60  0.784  0.413 
____________________________________________________________________ 
% SFA(%calories)      7ddr  365     6.40     2.29    1.79  0.737  0.561 
_______________________________________________________________________ 
Total FAT(gm)         7ddr  365  1397.83  1037.74  401.61  0.574  0.721 
_______________________________________________________________________ 
Total SFA(gm)         7ddr  365   156.72    73.38   47.40  0.681  0.608 
_______________________________________________________________________ 
% FAT(%calories)      24hr  365    29.22     4.15   56.22  0.876  0.069 
_______________________________________________________________________ 
Lig. Activ.(MET hr)   24hr  365     0.02     0.00    0.57  1.000  0.000 
_______________________________________________________________________ 
Mod. Activ.(MET hr)   24hr  365     0.69     2.01    4.13  0.256  0.328 
_______________________________________________________________________ 
Inte. Activ.(MET hr)  24hr  365     1.83     7.16    0.01  0.203  0.999 
_______________________________________________________________________ 
% SFA(%calories)      24hr  365     6.63     1.34   11.93  0.832  0.101 
_______________________________________________________________________ 
Total FAT(gm)         24hr  365   695.95   138.14  946.99  0.834  0.127 
_______________________________________________________________________ 
Total SFA(gm)         24hr  365   113.24    18.56  151.01  0.859  0.109 
_______________________________________________________________________ 
BMI (kg/m2)        quarter  365    30.06     0.47    0.01  0.984  0.984 
_______________________________________________________________________ 
DBP (mm Hg)        quarter  365    64.77    36.14    6.19  0.642  0.854 
_______________________________________________________________________ 
HDL (mg/dl)        quarter  365   127.97    13.30   13.55  0.906  0.495 
______________________________________________________________________ 
LDL (mg/dl)        quarter  365  1135.58    44.58  182.30  0.962  0.196 
_______________________________________________________________________ 
SBP (mm Hg)        quarter  365   231.14    70.78   13.40  0.766  0.841 
______________________________________________________________________ 
TC (mg/dl)         quarter  365  1463.33    61.32  225.00  0.960  0.214 
_______________________________________________________________________ 
TG (mg/dl)         quarter  365 14606.16  3354.32  873.32  0.813  0.793 
_______________________________________________________________________ 
Weight (kg)        quarter  365   298.35     3.81    0.02  0.987  0.995 
_______________________________________________________________________ 
*24hr: Based on a 24 hours recall telephone interview given for up to 3 days in a quarter 
*7ddr: 7-day dietary records based on subject recall, 1 each per quarter. 
Source: tpy04p20j.sas, tpy04p019h.sas, tpy04p23h.sas, tpy04p027l4.sas, tpy04p028i.sas 
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Table 6. Cluster and unit intra-class correlations of some health variables with a time period of 
365 days  
 
 unit intra-class correlation ( )tr  

 [0-0.10) [0.10-0.35) [0.35-0.65) [0.65-0.87) [0.87-1) 1 

[0-0.10)       
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 Moderate 
Act. 

  Intense 
Act. 
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*:7ddr, 7 days dietary records based on subject recall, 1 each per quarter 
**:24hr, based on a 24 hour recall telephone interview given for up to 3 days in a quarter 
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Figure 1. Increment in SMSE relative to TMSE of Cluster Mean Model, Mixed Model, Scott and 
Smith, and Random Permutation at two simulation runs (top=1000, bottom=10000) with 

t = 0.67,  = 0.83sρ ρ  
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Figure 2. Increment in SMSE relative to TMSE of Cluster Mean Model, Mixed Model, Scott and 
Smith, and Random Permutation at two simulation runs (top=1000, bottom=10000) 
with t = 0.67,  = 0.20sρ ρ  
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Figure 3. Increment in TMSE of predictors over TMSE of Random Permutation at one simulation 
(number of runs=10000) at two cases (top: t= 0.67,  = 0.83sρ ρ , bottom: t= 0.67,  = 0.20)sρ ρ  
based on known variances 
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Figure 4. Increment in SMSE of predictors over TMSE of Random Permutation at one simulation 
(number of runs =10000) at two cases (top: t= 0.67,  = 0.83sρ ρ , bottom: t= 0.67,  = 0.20)sρ ρ  
based on known variances  
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Figure 5. Increment in SMSE relative to TMSE of Cluster Mean Model, Mixed Model, Scott and 
Smith, and Random Permutation at one simulation (number of runs=10000) at two cases 
(top: t = 0.67,  = 0.83sρ ρ , bottom: t= 0.67,  = 0.20)sρ ρ  when variances are unknown  
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Figure 6. Increment in SMSE of predictors over TMSE of Random Permutation at one simulation 
(number of runs=10000) at two cases (top: t= 0.67,  = 0.83sρ ρ , bottom: t= 0.67,  = 0.20)sρ ρ  
when variances are unknown    
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  5. CONCLUSIONS  

 When variances were known, and the within-cluster variances were equal, there was not 

much of a difference in the percent increases in SMSE relative to TMSE for four predictors at 

both settings of cluster and unit intra-class correlations ( s t0.67,  0.83;  =0.67, =0.2s tr r r r= = ). 

However, when the variances were unknown, and within-cluster variances were equal, there were 

differences in SMSE relative to TMSE for four predictors in both cases of cluster and unit intra-

class correlations, especially at smaller unit sampling fraction t( )r . When variances were known, 

within-cluster variances were equal, and both cluster and unit intra-class correlations were bigger 

than 0.5, the Random Permutation Predictor had the minimum TMSE compared to TMSE of 

other predictors, followed by Scott and Smith’s Predictor. When the unit intra-class correlation 

was less than 0.5, for example, 0.2, and other setting were the same, the Random Permutation 

Predictor still had the minimum TMSE compared to TMSE of other predictors, but was followed 

by the Mixed Model. This was consistent with the results given by Stanek and Singer (2004), in 

which the Random Permutation Predictor had the smallest TMSE. When variances were known, 

and the within-cluster variances were equal, and both cluster and unit intra-class correlations were 

greater than 0.5, SMSE of Scott and Smith’s Predictor was the closest to the TMSE of the 

Random Permutation Predictor (Figure 3A). However, when unit intra-class correlation was 0.2, 

the SMSE of the Mixed Model was the closest to the TMSE of the Random Permutation Predictor 

(Figure 3B). Martino, Singer and Stanek (2004) reported similar results when variances were 

known, and the within cluster variances was equal, in which the Random Permutation Predictor 

had the smallest SMSE, followed by the Mixed Model when sρ  and tρ  were small (up to 0.2) or 

by Scott and Smith’s Predictor when sρ  and tρ  were moderately large (between 0.5 and 0.8). 

 When variances were unknown, and within-cluster variances were equal, the Random 

Permutation Predictor was not always the best among three predictors (excluding the Cluster 
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Mean) based on the relative MSE the simulated MSE-the theoretical MSE 100%
the theoretical MSE

x⎛ ⎞
⎜ ⎟
⎝ ⎠

(page 3). 

Minimum MSE was obtained for the predictor under the Random Permutation when the Cluster 

sampling fraction (F) and the unit-sampling fraction (f) were small. This was consistent with the 

results given by Martino, Singer and Stanek (2004). The Cluster Mean Model had the smallest 

percent increase in SMSE relative to its TMSE among four predictors at both settings of cluster 

and unit intra-class correlations. Furthermore, The Cluster Mean had a constant relative MSE 

over the unit-sampling fractions (f). The reason was that the Cluster Mean Model did not depend 

on the unit-sampling fraction (f) as shown in Table 1. 

 In addition, when response errors increase, i.e. tρ , was small, the relative increase in the 

predictor’s SMSE over the theoretical MSE of the Random Permutation was inflated especially 

when the unit-sampling fraction was small. That may indicate that performance of predictors 

became poor at this circumstance. 

 
6. DISCUSSION  

 
There were several limitations to this study. First, data in Season Study were obtained from 

volunteers, and both subjects and dates of measurements over a quarter were not randomly 

selected. We assumed that subjects participating in this study to be comparable to a simple 

random selection from a finite population. In addition, since the response errors of most of the 

variables in this study were not available in the literature, they were estimated by two simulated 

responses on each subject. The simulated responses of the variables on each subject depended on 

both the mean values of variables at quarter 1 of the quarterly data set in the Seasons study and 

the coefficient of variations of the variables. We had made up coefficients of variation 

corresponding to simple plausible assumptions. Moreover, we only assumed that data were 

normally distributed. In addition, we assumed that number of units in each cluster was equal, and 

an equal number of units were selected from each selected cluster. And we had not simulated 
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results when the unit-sampling fraction (f) was under 0.1. Despite those limitations, this study had 

several features worthy of our research efforts. This study may be used to assist public health 

researchers in evaluating BLUP with variables of public health importance in different practical 

settings. Therefore, this research had provided practical guidance as to how to best predict some 

common attributes such as saturated fat intake. Finally, the predictor could be evaluated by the 

theoretical and the simulated MSE.  
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APPENDIX A 
 

SAS CODE SPECIFICATION 1 
 
Data must be transformed as two rows/measures per subject with column values of subject (id), 
weight. 
 
Proc mixed data=quarter method=reml; 
 Class id; 
 Model weight=/solution; 
 Random id; 
Run; 
 
The residual error in the variance components is the response error of weight. 
 

 
APPENDIX B 

 
SAS CODE SPECIFICATION 2 

 
Statistical analysis for model (3.1) using SAS 
Data must be transformed as five rows/measures per subject with column variables identifying 
the subject (id), total cholesterol (tc). 
 
Proc mixed data=quarter method=reml; 
 Class id; 
 Model tc=/solution; 
 Random id; 
Run; 
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