Notation for Mixed Models for Finite Populations
 Simple Population

Units and Response

$s=1, \ldots, N$
y_{s} for $s=1, \ldots, N$
x_{s} for $s=1, \ldots, N$
$x_{k s}$ for $s=1, \ldots, N, k=1, \ldots, p \quad$ Auxiliary variables for unit s (Wenjun)
$z_{k s}=x_{k s}-\mu_{k}$ for $s=1, \ldots, N, k=1, \ldots, p \quad$ Auxiliary variable deviation from mean for unit s
$z_{0 \mathrm{~s}}$ for $s=1, \ldots, N$
Expected Response (over replicated measurements)(notation used with auxiliary information) (Wenjun)
w_{s} for $s=1, \ldots, N$ where $\sum_{s=1}^{N} w_{s}=1 \quad$ Weight for unit s.
$w_{s}=\frac{\left(x_{s}-\mu_{x}\right)^{2}}{\sum_{s=1}^{N}\left(x_{s}-\mu_{x}\right)^{2}} \quad$ Weight for regression parameter (Luz Mery)
$y_{w s}=w_{s} y_{s}$ for $s=1, \ldots, N \quad$ Weighed expected response for unit s
$x_{s}^{\diamond}=\frac{x_{s}-\mu_{x}}{(N-1) \sigma_{x}^{2}}$ for $s=1, \ldots, N \quad$ Regression approach (Luz Mery)
$y_{s}^{\diamond}=y_{s} x_{s}^{\diamond}$ for $s=1, \ldots, N \quad$ Regression approach (Luz Mery)
$e_{s}=y_{s}-\left(A+B x_{s}\right) \quad$ Lack of fit in regression approach (Luz Mery)
$b_{s}=\frac{y_{s}-\mu_{y}}{x_{s}-\mu_{x}} \quad$ Slope for unit s based on connecting population means (Luz
Mery)

With Measurement Error

$k=1, \ldots, r_{s}$
$W_{s k}$ or W_{s} (if $r_{s}=1$) for $k=1, \ldots, r_{s} \quad$ Measurement error for $k^{\text {th }}$ replication of unit s
$\tilde{W}_{i k}$ or \tilde{W}_{i} (if $r_{s}=1$) for $k=1, \ldots, r_{s}$ Measurement error for $k^{\text {th }}$ replication on the unit in position i
$Y_{s k}=y_{s}+W_{s k}$ for $k=1, \ldots, r_{s} \quad$ Measurement for $k^{t h}$ replication.
$Y_{\text {wsk }}=w_{s} Y_{s k} \quad$ Weighted response for $k^{\text {th }}$ replication of unit s

Conventions:

Use the subscript R for vectors when the only random component is measurement error.

Use the subscript pos for expectation over position measurement error (Luz Mery)
Use the subscript ξ_{3} for expectation over measurement error on units in clusters.
Use the subscript ξ_{2} for expectation with respect to permutations of units in a cluster.
Use the subscript ξ_{1} for expectation with respect to permutations of the clusters.
Use the subscript ξ for expectation with respect to permutations of the units of a simple population.
Use the subscript S for expectation with respect to permutations of the units of a simple population (Luz Mery).
Use a super-script * for vectors when units and measurement error are random.
Use an over-script $\vec{Y}_{i s}=U_{i s} y_{s}$ when random variables are expanded.

Vectors

$\mathbf{y}=\left(\left(y_{s}\right)\right)=\left(\begin{array}{llll}y_{1} & y_{2} & \cdots & y_{N}\end{array}\right)^{\prime} \quad$ Expected response vector (with respect to measurement)
$\mathbf{x}_{s}=\left(\left(x_{k s}\right)\right)=\left(\begin{array}{llll}x_{1 s} & x_{2 s} & \cdots & x_{p s}\end{array}\right)^{\prime} \quad$ Auxiliary response for unit s (Wenjun)
$\mathbf{x}=\left(\left(x_{s}\right)\right)=\left(\begin{array}{llll}x_{1} & x_{2} & \cdots & x_{N}\end{array}\right)^{\prime} \quad$ Auxiliary response (Luz Mery)
$\mathbf{x}^{\diamond}=\left(\left(x_{s}^{\diamond}\right)\right)=\left(\begin{array}{llll}x_{1}^{\diamond} & x_{2}^{\diamond} & \cdots & x_{N}^{\diamond}\end{array}\right)^{\prime} \quad$ Auxiliary response (Luz Mery)
$\mathbf{z}_{s}=\left(\left(z_{k s}\right)\right)=\left(\begin{array}{llll}z_{0 s} & z_{1 s} & \cdots & z_{p s}\end{array}\right)^{\prime}$
$\mathbf{z}=\left(\left(\mathbf{z}_{s}^{\prime}\right)\right)$
$\mathbf{w}=\left(\left(w_{s}\right)\right)=\left(\begin{array}{llll}w_{1} & w_{2} & \cdots & w_{N}\end{array}\right)^{\prime} \quad$ Vector of weights
$\mathbf{y}_{w}=\left(\left(\begin{array}{llll}y_{w s}\end{array}\right)\right)=\left(\begin{array}{llll}y_{w 1} & y_{w 2} & \cdots & y_{w N}\end{array}\right)^{\prime} \quad$ Expected weighted response vector (with respect to $\mathbf{Y}_{R}=\left(\left(Y_{s k}\right)\right)=\left(\begin{array}{llll}Y_{1 k} & Y_{2 k} & \cdots & Y_{N k}\end{array}\right)^{\prime} \quad$ Measured response vector (for $r_{s}=1$ for all $s=1, \ldots, N$), $\mathbf{Y}_{w R}=\left(\left(\left(Y_{w s k}\right)\right)=\left(\begin{array}{llll}Y_{w 1 k} & Y_{w 2 k} & \cdots & Y_{w N k}\end{array}\right)^{\prime} \quad\right.$ Measured weighted response vector (for $r_{s}=1$ for all $s=1, \ldots, N)$,
$\mathbf{W}=\left(\left(W_{s k}\right)\right)=\left(\begin{array}{llll}W_{1 k} & W_{2 k} & \cdots & W_{N k}\end{array}\right)^{\prime}$ Measurement error vector (for $r_{s}=1$ for all $\left.s=1, \ldots, N\right)$,
$\boldsymbol{\alpha}$ General vector of parameters.
\mathbf{e}_{i} Constant vector with 1 in position i and zero elsewhere

Parameters and Constants

$\bar{c}_{I I}=\frac{1}{N-n} \sum_{i=n+1}^{N} c_{i} \quad$ Average remaining coefficient when predicting a mean using auxiliary variables
$\sigma_{C_{I I}}^{2}=\frac{1}{N-n-1} \sum_{i=n+1}^{N}\left(c_{i}-\bar{c}_{I I}\right)^{2} \quad$ Used in EMSE of Regression Predictor (Luz Mery)
$f=\frac{n}{N} \quad$ Sampling fraction (Wenjun) (but this may be defined differently in 2-stage sampling)
$\mu=\frac{1}{N} \sum_{s=1}^{N} y_{s} \quad$ Usual definition
$\mu_{y}=\frac{1}{N} \sum_{s=1}^{N} y_{s} \quad$ Definition used with auxiliary variables, regression.
$\mu_{y^{\circ}}=\frac{1}{N} \sum_{s=1}^{N} y_{s}^{\diamond} \quad \quad$ Regression problem (Luz Mery)
$\mu_{x}=\frac{1}{N} \sum_{s=1}^{N} x_{s}$
$\mu_{w}=\frac{1}{N} \sum_{s=1}^{N} w_{s} y_{s}$
$A=\mu_{y}-B \mu_{x} \quad$ Regression intercept

$$
\operatorname{var}_{R}\left(W_{s k}\right)=\sigma_{s e}^{2}
$$

$$
\text { Measurement error variance associated with unit } s
$$

$$
\operatorname{var}_{R}\left(\tilde{W}_{i k}\right)=\sigma_{i L}^{2}
$$

Measurement error variance (e.g. interviewer, laboratory)
associated with position i (Ed)

$$
\operatorname{var}_{p o s}\left(\tilde{W}_{i}\right)=\tilde{\sigma}_{i}^{2}
$$

Measurement error variance associated with position i (Luz Mery)

$$
\begin{equation*}
\sigma_{e}^{2}=\frac{1}{N} \sum_{s=1}^{N} \sigma_{s e}^{2} \tag{Ed}
\end{equation*}
$$

$$
\begin{equation*}
\bar{\sigma}_{e}^{2}=\frac{1}{N} \sum_{s=1}^{N} \sigma_{s e}^{2} \tag{LuzMery}
\end{equation*}
$$

$$
\begin{aligned}
& B=\frac{\sum_{s=1}^{N}\left(y_{s}-\mu_{y}\right)\left(x_{s}-\mu_{x}\right)}{\sum_{s=1}^{N}\left(x_{s}-\mu_{x}\right)^{2}} \quad \text { Regression parameter for association. (Luz Mery) } \\
& \sigma^{2}=\frac{1}{N-1} \sum_{s=1}^{N}\left(y_{s}-\mu\right)^{2} \text { or } \\
& \sigma_{y}^{2}=\frac{1}{N-1} \sum_{s=1}^{N}\left(y_{s}-\mu_{y}\right)^{2} \quad \text { Regression problem (Luz Mery) } \\
& \sigma_{x}^{2}=\frac{1}{N-1} \sum_{s=1}^{N}\left(x_{s}-\mu_{x}\right)^{2} \quad \text { Regression problem (Luz Mery) } \\
& \sigma_{y^{\circ}}^{2}=\frac{1}{N-1} \sum_{s=1}^{N}\left(y_{s}^{0}-\mu_{y^{\circ}}\right)^{2} \quad \quad \text { Regression problem (Luz Mery) } \\
& \sigma_{w}^{2}=\frac{1}{N-1} \sum_{s=1}^{N}\left(w_{s} y_{s}-\mu_{w}\right)^{2} \\
& \sigma_{x y}=\frac{1}{N-1} \sum_{s=1}^{N}\left(y_{s}-\mu_{y}\right)\left(x_{s}-\mu_{x}\right) \quad \text { Regression (Luz Mery) } \\
& \sigma_{y^{\wedge} x}=\frac{1}{N-1} \sum_{s=1}^{N}\left(y_{s}^{\diamond}-\mu_{y^{\wedge}}\right)\left(x_{s}-\mu_{x}\right) \\
& \rho_{x y}=\frac{\sigma_{x y}}{\sigma_{x} \sigma_{y}}
\end{aligned}
$$

$\bar{\sigma}_{e}^{\circlearrowleft 2}=\frac{1}{N} \sum_{s=1}^{N} x_{s}^{\Delta 2} \sigma_{s e}^{2}$
$\sigma_{\text {we }}^{2}=\frac{1}{N} \sum_{s=1}^{N} w_{s}^{2} \sigma_{s e}^{2}$
$k=\frac{\sigma^{2}}{\sigma^{2}+\sigma_{e}^{2}}$
Random permutation shrinkage constant for simple random
sampling with unit measurement error where $r_{s}=1$ for all $s=1, \ldots, N$.
$\tilde{k}_{i}=\frac{\sigma^{2}}{\sigma^{2}+\sigma_{i L}^{2}} \quad$ Random permutation shrinkage constant for simple random sampling with position measurement error where $r_{s}=1$ for all $s=1, \ldots, N$ (Ed).
$k_{i}^{+}=\frac{\sigma^{2}}{\sigma^{2}+\sigma_{i}^{2}} \quad$ Partially conditional random permutation shrinkage constant for simple random sampling with position measurement error where $r_{s}=1$ for all $s=1, \ldots, N$ (Ed).
$k^{+}=\frac{\sigma_{y}^{2}\left(1-\rho_{x y}^{2}\right)}{\bar{\sigma}_{e}^{2}+\sigma_{y}^{2}\left(1-\rho_{x y}^{2}\right)}$
Constant for Reg with unit measurement error (Luz Mery)
$k^{\diamond+}=\frac{\sigma_{y^{\circ}}^{2}\left(1-\rho_{x y^{\circ}}^{2}\right)}{\bar{\sigma}_{e}^{\circ 2}+\sigma_{y^{\circ}}^{2}\left(1-\rho_{x y^{\circ}}^{2}\right)}$
Regression problem (Luz Mery)
$\tilde{k}_{i}=\frac{\sigma_{y}^{2}\left(1-\rho_{x y}^{2}\right)}{\tilde{\sigma}_{i}^{2}+\sigma_{y}^{2}\left(1-\rho_{x y}^{2}\right)}$
Constant for Reg with Position error (Luz Mery)
$\tilde{k}_{i}^{*}=\frac{\tilde{k}_{i}}{\sum_{i=1}^{n} \tilde{k}_{i}}$
Used by Luz Mery for Regression
$D^{+}=(N-n) \bar{c}_{I I}+n\left(1+k^{+}\right) \bar{c}_{I} \quad$ Constant for Regression with measurement error (Luz Mery)
$\tilde{D}=(N-n) \bar{c}_{I I}+\sum_{i=1}^{n} c_{i}\left(1+\tilde{k}_{i}\right) \quad$ Constant for Regression with position error (Luz Mery)
$\sigma_{i}^{2}=\mathbf{u}_{i}^{\prime}\left(\underset{s=1}{\underset{~}{\oplus}} \sigma_{s e}^{2}\right) \mathbf{u}_{i} \quad$ Measurement error variance associated with the unit realized in position i.
(Notice that we could define $\sigma_{i}^{2}=\mathbf{u}_{i}^{\prime}\left(\underset{s=1}{N} \sigma_{s e}^{2}\right) \mathbf{u}_{i}+\sigma_{i L}^{2}$, which seems better.)

Vectors and Matrices

$\mathbf{I}_{a}=\left(\begin{array}{cccc}1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1\end{array}\right) ;$
$\mathbf{1}_{a}=\left(\begin{array}{c}1 \\ 1 \\ \vdots \\ 1\end{array}\right) ;$
$\mathbf{J}_{a}=\mathbf{1}_{a} \mathbf{1}_{a}^{\prime}=\left(\begin{array}{cccc}1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1\end{array}\right) ;$
$\mathbf{D}_{\mathbf{a}}=\left(\begin{array}{cccc}a_{1} & 0 & \cdots & 0 \\ 0 & a_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{c}\end{array}\right)$ where $\mathbf{a}=\left(\left(a_{r}\right)\right)=\left(\begin{array}{llll}a_{1} & a_{2} & \cdots & a_{c}\end{array}\right)^{\prime}$. A diagonal matrix.
$\mathbf{D}_{\bar{\sigma}_{s}^{2}}$ an $N \times N$ diagonal matrix with elements $\bar{\sigma}_{s}^{2}$ on the diagonal.
$\mathbf{P}_{a}=\mathbf{I}_{a}-\frac{1}{a} \mathbf{J}_{a}$
$\mathbf{P}_{a, b}=\mathbf{I}_{a}-\frac{1}{b} \mathbf{J}_{a}$
$\mathbf{R}=\left(\begin{array}{cc}\mathbf{I}_{N} & \mathbf{0} \\ \mathbf{0} & \mathbf{P}_{N}\end{array}\right) \quad$ Used to subtract mean in regression (Luz Mery)
$\boldsymbol{\Delta}=\frac{1}{N-1}\left(\underset{s=1}{\oplus} y_{s}\right) \mathbf{P}_{N}\left(\underset{s=1}{\oplus} y_{s}\right)$ where we note that $\sigma^{2}=\mathbf{1}_{N}^{\prime} \boldsymbol{\Delta} \mathbf{1}_{N} \quad$ and $\sigma_{w}^{2}=\mathbf{w}^{\prime} \Delta \mathbf{w}$
$\mathbf{L}=\binom{\mathbf{L}_{I}}{\mathbf{L}_{I I}} \quad$ used to collapse an partition random variables, such as $\binom{\mathbf{L}_{I}}{\mathbf{L}_{I I}}=\binom{\left(\begin{array}{cc}\mathbf{I}_{n} & \mathbf{0} \\ -n \times N-n\end{array}\right) \otimes \mathbf{1}_{N}^{\prime}}{\hdashline\left(\begin{array}{cc}\mathbf{0}_{N} & \mathbf{I}_{N-n}\end{array}\right) \otimes \mathbf{1}_{N}^{\prime}}$
$\mathbf{K}=\binom{\mathbf{K}_{I}}{\mathbf{K}_{I I}}$ used to partition random variables into samples, remainder, such that

$$
\binom{\mathbf{K}_{I}}{\mathbf{K}_{I I}}=\binom{\mathbf{I}_{2} \otimes\left(\begin{array}{cc}
\mathbf{I}_{n} & \mathbf{0} \\
-\cdots(N-n
\end{array}\right)}{\mathbf{I}_{2} \otimes\left(\begin{array}{cc}
\mathbf{0} & \mathbf{I}_{N-n}
\end{array}\right)} \text { in regression (Luz Mery) }
$$

$\mathbf{g}^{\prime}=\left(\begin{array}{ll}\mathbf{g}_{I}^{\prime} & \mathbf{g}_{I I}^{\prime}\end{array}\right) \quad$ constants to determine 'target'
$\mathbf{c}=\left(\begin{array}{ll}\mathbf{c}_{I}^{\prime} & \mathbf{c}_{I I}^{\prime}\end{array}\right)^{\prime} \quad$ Constants to determine target with auxiliary variables (Wenjun).
$\mathbf{c}_{I}=\left(\left(c_{i}\right)\right)=\left(\begin{array}{llll}c_{1} & c_{2} & \cdots & c_{n}\end{array}\right)^{\prime} \quad$ Partitioned constants for sample (Wenjun)
$\mathbf{C}_{I}=\left(\left(c_{i}\right)\right)=\left(\begin{array}{llll}c_{1} & c_{2} & \cdots & c_{n}\end{array}\right)^{\prime} \quad$ Partitioned Constants to define regression target (Luz Mery)
$\mathbf{c}_{I I}=\left(\left(c_{n+i}\right)\right)=\left(\begin{array}{llll}c_{n+1} & c_{n+2} & \cdots & c_{N}\end{array}\right)^{\prime}$ Partitioned constants for remainder (Wenjun)
$\mathbf{C}_{I I}=\left(\left(c_{n+i}\right)\right)=\left(\begin{array}{llll}c_{n+1} & c_{n+2} & \cdots & c_{N}\end{array}\right)^{\prime} \quad$ Partitioned Constants to define regression target (Luz Mery)
$\mathbf{C}_{I}=\left(\begin{array}{ll}\mathbf{c}_{I}^{\prime} & \mathbf{0}_{n p \times 1}^{\prime}\end{array}\right)^{\prime} \quad$ Partitioned linear combination for sample with auxiliary variables (Wenjun)
$\mathbf{C}_{I I}=\left(\begin{array}{ll}\mathbf{c}_{I I}^{\prime} & \mathbf{0}_{(N-n) p \times 1}^{\prime}\end{array}\right)^{\prime} \quad$ Partitioned linear combination for remaining with auxiliary variables (Wenjun)
$\mathbf{e}_{i}^{\prime}=\left(\begin{array}{ll}\mathbf{e}_{i I}^{\prime} & \mathbf{e}_{i I I}^{\prime}\end{array}\right) \quad$ Partitioned version of indicator vector for position i.
$\mathbf{G}_{I}=\left(\begin{array}{ll}\mathbf{1}_{n}^{\prime} & \mathbf{0}_{n p}^{\prime}\end{array}\right)^{\prime} \quad$ Expression similar to design matrix with auxiliary sample random variables
$\mathbf{g}_{I}=\left(\begin{array}{ll}\mathbf{C}_{I}^{\prime} & \mathbf{0}_{n \times 1}^{\prime}\end{array}\right)^{\prime} \quad$ Partitioned linear combination for sample with regression (Luz Mery)
$\mathbf{G}_{I I}=\left(\begin{array}{ll}\mathbf{1}_{N-n}^{\prime} & \mathbf{0}_{(N-n) p}^{\prime}\end{array}\right)^{\prime} \quad$ Expression similar to design matrix for remainder random variables.
$\mathbf{G}_{s}^{\prime}=\mathbf{G}^{\prime} \mathbf{K}_{s}^{\prime} \quad$ Sample linear combination to define target by Viviana
$\mathbf{G}_{R}^{\prime}=\mathbf{G}^{\prime} \mathbf{K}_{R}^{\prime} \quad$ Remainder linear combination to define target by Viviana
$\boldsymbol{\mu}_{x}=\left(\left(\mu_{k}\right)\right)=\frac{1}{N} \sum_{s=1}^{N} \mathbf{x}_{s} \quad$ (Wenjun)
$\boldsymbol{\mu}_{z}=\left(\begin{array}{ll}\mu_{y} & \mathbf{0}_{p}^{\prime}\end{array}\right)^{\prime}$
(Wenjun)

$$
\begin{aligned}
& \boldsymbol{\mu}=\left(\begin{array}{ll}
\mu_{y} & \mu_{x}
\end{array}\right)^{\prime} \quad \text { (Luz Mery) } \\
& \boldsymbol{\Sigma}=\frac{1}{N-1} \sum_{s=1}^{N}\left(\mathbf{z}_{s}-\boldsymbol{\mu}_{z}\right)\left(\mathbf{z}_{s}-\boldsymbol{\mu}_{z}\right)^{\prime}=\left(\begin{array}{cc}
\sigma_{y}^{2} & \boldsymbol{\sigma}_{y X}^{\prime} \\
\boldsymbol{\sigma}_{y X} & \boldsymbol{\Sigma}_{X}
\end{array}\right) \\
& \boldsymbol{\Sigma}=\left(\begin{array}{ll}
\sigma_{y}^{2} & \sigma_{x y} \\
\sigma_{x y} & \sigma_{x}^{2}
\end{array}\right) \quad \text { Variance matrix (Luz Mery) } \\
& \boldsymbol{\Sigma}^{-1}=\left(\begin{array}{ll}
\sigma_{11}^{\circ} & \sigma_{12}^{\circ} \\
\sigma_{21}^{\circ} & \sigma_{22}^{\circ}
\end{array}\right) \quad \text { Inverse variance for regression used by Luz Mery } \\
& \boldsymbol{\sigma}_{y x}=\left(\begin{array}{llll}
\sigma_{y x_{1}} & \sigma_{y x_{2}} & \cdots & \sigma_{y x_{p}}
\end{array}\right)^{\prime} \\
& \boldsymbol{\Sigma}_{x}=\left(\left(\sigma_{x_{k} x_{k} x^{*}}\right)\right) \\
& \rho_{y X}^{2}=\boldsymbol{\sigma}_{x y}^{\prime} \boldsymbol{\Sigma}_{x}^{-1} \boldsymbol{\sigma}_{x y} / \sigma_{y}^{2} \quad \text { Squared multiple correlation coefficient of } Y \text { on } \mathbf{X} \\
& \boldsymbol{\beta}=\boldsymbol{\Sigma}_{X}^{-1} \boldsymbol{\sigma}_{y X}=\left(\begin{array}{llll}
\beta_{1} & \beta_{2} & \cdots & \beta_{p}
\end{array}\right)^{\prime} \quad \text { Regression parameters between response and auxiliary variables } \\
& \beta_{s}=y_{s}-\mu \text {, so that } y_{s}=\mu+\beta_{s} \quad \text { and } \boldsymbol{\beta}=\left(\begin{array}{llll}
\beta_{1} & \beta_{2} & \cdots & \beta_{N}
\end{array}\right)^{\prime} \quad \text { (Double definitions!). }
\end{aligned}
$$

Permutation Random Variables-

$i=1, \ldots, N \quad$ Position in the permutation.
$U_{i s}$ for $i=1, \ldots, N ; s=1, \ldots, N \quad$ Indicator of selection of unit s in position i.
$u_{i s}$ for $i=1, \ldots, N ; s=1, \ldots, N \quad$ Realization of the random variable $U_{i s}$ for a permutation
$S_{i}=\sum_{s=1}^{N} U_{i s} s$ for $i=1, \ldots, N \quad$ Random variable representing label for unit in position i
$Y_{i}=\sum_{s=1}^{N} U_{i s} y_{s}$ for $i=1, \ldots, N \quad$ Random variable representing expected response for unit in position i
$Y_{w i}=\sum_{s=1}^{N} U_{i s} y_{w s}$ for $i=1, \ldots, N$
$X_{i}=\sum_{s=1}^{N} U_{i s} x_{s}$ for $i=1, \ldots, N$
Random variable representing expected weighted response

Regression approach (Luz Mery)

$$
\begin{aligned}
& X_{i}^{\diamond}=\frac{X_{i}-\mu_{x}}{(N-1) \sigma_{x}^{2}} \quad \quad \text { Regression approach (Luz Mery } \diamond=\text { star) } \\
& Y_{i}^{\diamond}=Y_{i} X_{i}^{\diamond} \quad \text { Regression approach (Luz Mery } \diamond=\text { star) } \\
& Y_{i}^{+}=\sum_{s=1}^{N} U_{i s}\left(y_{s}+W_{s}\right) \quad \text { Response for the unit in position } i \text { (for } r_{s}=1 \text { for all } \\
& s=1, \ldots, N \text {) when there is measurement error (Luz } \\
& \text { Mery). } \\
& Y_{i}^{+}=Y_{i}+\sum_{s=1}^{N} u_{i s} W_{s k} \text { or } Y_{i}^{+}=Y_{i}+\tilde{W}_{i k} \quad \text { Partially conditional response (Ed) (Double definitions!) } \\
& Y_{i}^{\diamond+}=Y_{i}^{+} X_{i}^{\diamond} \quad \text { Regression approach (Luz Mery } \diamond=\text { star) } \\
& Y_{i k}^{*}=\sum_{s=1}^{N} U_{i s} Y_{s k} \text { or } Y_{i}^{*} \quad \text { Response for the unit in position } i \text { (for } r_{s}=1 \text { for all } \\
& s=1, \ldots, N) \text { when there is measurement error (Ed). } \\
& Y_{w i k}^{*}=\sum_{s=1}^{N} U_{i s} Y_{w s k} \\
& \tilde{Y}_{i k}=\sum_{s=1}^{N} U_{i s} y_{s}+\tilde{W}_{i k} \quad \text { or } \tilde{Y}_{i} \text { (when } k=1 \text {) Response for the unit in position } i \text { when there is } \\
& \text { position (i.e. interviewer) error } \\
& W_{i k}^{*}=\sum_{s=1}^{N} U_{i s} W_{s k} \quad \text { or } W_{i k}^{*}=\mathbf{U}_{i}^{\prime} \mathbf{W} \quad \text { Replication error for the unit in position } i \text { (for } r_{s}=1 \\
& \text { for all } s=1, \ldots, N \text {) } \\
& \text { Measurement error associated with Position (i.e. } \\
& \text { interviewer) for the unit in position } i \text {. } \\
& \text { Regression problem (Luz Mery) } \\
& \text { Realization of the vector } \mathbf{U}_{i} \text {. }
\end{aligned}
$$

$$
\mathbf{U}=\left(\begin{array}{llll}
\mathbf{U}_{1} & \mathbf{U}_{2} & \cdots & \mathbf{U}_{N}
\end{array}\right)^{\prime}
$$

Expanded Random Variables

$\vec{Y}_{i s}=U_{i s} y_{s}$ for $i=1, \ldots, N$ and $s=1, \ldots, N$ Random variable representing for unit s and position i in a permutation.
$\vec{Y}_{i s k}=U_{i s} Y_{\text {sk }}$ for $i=1, \ldots, N$ and $s=1, \ldots, N \quad$ Random variable representing response for unit s and position i in a permutation.
$\vec{W}_{\text {isk }}=U_{i s} W_{\text {sk }}$ for $i=1, \ldots, N$ and $s=1, \ldots, N \quad$ Random variable representing measurement error for $k^{\text {th }}$ replication for unit s and position i in a permutation.
$\overrightarrow{\mathbf{Y}}_{i}=\left(\left(\begin{array}{llll}\left.U_{i s} y_{s}\right)\end{array}\right)=\left(\begin{array}{llll}U_{i 1} y_{1} & U_{i 2} y_{2} & \cdots & U_{i N} y_{N}\end{array}\right)^{\prime} \quad\right.$ or $\quad \overrightarrow{\mathbf{Y}}_{i}=\binom{N}{\underset{s=1}{\oplus} y_{s}} \mathbf{U}_{i}$
$\ddot{\mathbf{Y}}_{i}^{*}=\left(\left(U_{i s}\left(y_{s}+W_{\text {sk }}\right)\right)\right)=\left(\begin{array}{llll}U_{i 1}\left(y_{1}+W_{1 k}\right) & U_{i 2}\left(y_{2}+W_{2 k}\right) & \cdots & U_{i N}\left(y_{N}+W_{N k}\right)\end{array}\right)^{\prime}$
or $\quad \ddot{\mathbf{Y}}_{i}^{*}=\ddot{\mathbf{Y}}_{i}+\ddot{\mathbf{W}}_{i}=\left(\underset{s=1}{\oplus}\left(y_{s}+W_{s k}\right)\right) \mathbf{U}_{i} \quad$ where $r_{s}=1$ for all $\quad s=1, \ldots, N$
$\ddot{\mathbf{Y}}^{*}=\operatorname{vec}\left(\begin{array}{llll}\ddot{\mathbf{Y}}_{1}^{*} & \ddot{\mathbf{Y}}_{2}^{*} & \cdots & \left.\ddot{\mathbf{Y}}_{N}^{*}\right) \quad \text { or } \quad \ddot{\mathbf{Y}}^{*}=\operatorname{vec}\left[\left(\underset{s=1}{\left.\underset{~}{\oplus}\left(y_{s}+W_{\text {sk }}\right)\right)} \mathbf{U}^{\prime}\right]\right.\end{array}\right.$

$\ddot{\mathbf{W}}_{i}=\left(\left(\begin{array}{llll}U_{i s} W_{s k}\end{array}\right)\right)=\left(\begin{array}{llll}U_{i 1} W_{1 k} & U_{i 2} W_{2 k} & \cdots & U_{i N} W_{N k}\end{array}\right)^{\prime} \quad$ or $\quad \ddot{\mathbf{W}}_{i}=\left(\begin{array}{l}\oplus_{s=1}^{N} W_{s k}\end{array}\right) \mathbf{U}_{i} \quad$ where $r_{s}=1$ for all

$$
s=1, \ldots, N
$$

Collapsed Random Variables

\mathbf{L} used to collapse random variables, as for example in $\mathbf{L} \overrightarrow{\mathbf{Y}}=(\mathbf{A} \otimes \mathbf{B}) \overrightarrow{\mathbf{Y}}$
$\mathbf{Y}=\left(\left(Y_{i}\right)\right)=\left(\begin{array}{llll}Y_{1} & Y_{2} & \cdots & Y_{N}\end{array}\right)^{\prime} \quad$ or $\mathbf{Y}=\mathbf{U} \mathbf{y}$
$\mathbf{Y}_{w}=\left(\left(\begin{array}{llll}\left.Y_{w i}\right)\end{array}\right)=\left(\begin{array}{llll}Y_{w 1} & Y_{w 2} & \cdots & Y_{w N}\end{array}\right)^{\prime} \quad\right.$ or $\mathbf{Y}=\mathbf{U y}$

$$
\begin{aligned}
& \mathbf{Y}^{*}=\left(\left(Y_{i k}^{*}\right)\right)=\left(\begin{array}{llll}
Y_{1 k}^{*} & Y_{2 k}^{*} & \cdots & Y_{N k}^{*}
\end{array}\right)^{\prime} \quad \text { or } \quad \mathbf{Y}^{*}=\mathbf{Y}+\mathbf{W}^{*} \text { when } r_{s}=1 \text { for all } s=1, \ldots, N \text { (Ed) } \\
& \mathbf{Y}^{+}=\left(\left(Y_{i}^{+}\right)\right)=\left(\begin{array}{llll}
Y_{1}^{+} & Y_{2}^{+} & \cdots & Y_{N}^{+}
\end{array}\right)^{\prime} \quad \text { or } \quad \mathbf{Y}^{+}=\mathbf{Y}+\mathbf{U W} \text { when } r_{s}=1 \text { for all } s=1, \ldots, N \text { (Luz Mery) } \\
& \tilde{\mathbf{Y}}=\mathbf{Y}+\tilde{\mathbf{W}} \quad \text { Regression problem with position error, (Luz Mery) } \\
& \mathbf{Y}_{w}^{*}=\left(\left(\begin{array}{llll}
Y_{w i k}^{*}
\end{array}\right)\right)=\left(\begin{array}{llll}
Y_{w 1 k}^{*} & Y_{w 2 k}^{*} & \cdots & Y_{w N k}^{*}
\end{array}\right)^{\prime} \mathbf{Y}_{w}^{*}=\left(\left(\begin{array}{lll}
Y_{w i k}^{*}
\end{array}\right)\right)=\left(\begin{array}{llll}
Y_{w 1 k}^{*} & Y_{w 2 k}^{*} & \cdots & Y_{w N k}^{*}
\end{array}\right)^{\prime} \\
& \mathbf{W}^{*}=\left(\left(W_{i k}^{*}\right)\right)=\left(\begin{array}{llll}
W_{1 k}^{*} & W_{2 k}^{*} & \cdots & W_{N k}^{*}
\end{array}\right)^{\prime} \text { or } \mathbf{W}^{*}=\mathbf{U W} \quad \text { when } r_{s}=1 \text { for all } s=1, \ldots, N \\
& \tilde{\mathbf{W}}=\left(\left(\tilde{W}_{i}\right)\right)=\left(\begin{array}{llll}
\tilde{W}_{1} & \tilde{W}_{2} & \cdots & \tilde{W}_{N}
\end{array}\right)^{\prime} \text { when } r_{s}=1 \text { for all } s=1, \ldots, N \text {, position measurement error (Luz } \\
& \text { Mery) } \\
& \mathbf{X}=\mathbf{U x} \\
& \mathbf{Z}_{i}=\sum_{s=1}^{N} U_{i s} \mathbf{z}_{s}=\mathbf{z}^{\prime} \mathbf{U}_{i} \\
& \mathbf{Z}=\mathbf{U z} \\
& \mathbf{Z}^{+}=\operatorname{vec}\left(\mathbf{Y}^{+} \quad \mathbf{X}\right) \quad \text { Regression problem with measurement error (Luz Mery) } \\
& \tilde{\mathbf{Z}}=\operatorname{vec}\left(\begin{array}{ll}
\tilde{\mathbf{Y}} & \mathbf{X}
\end{array}\right) \quad \text { Regression problem with position error (Luz Mery) } \\
& \mathbf{E}^{+}=\operatorname{vec}\left(\begin{array}{ll}
\mathbf{E}_{y}^{+} & \mathbf{E}_{x}
\end{array}\right) \quad \text { Residual in regression (Luz Mery) } \\
& \mathbf{E}_{y}^{+}=\mathbf{Y}^{+}-\mathbf{1}_{N} \mu_{y} \quad \text { Measurement error (unit) called Response Error (Luz Mery) } \\
& \tilde{\mathbf{E}}_{y}=\tilde{\mathbf{Y}}-\mathbf{1}_{N} \mu_{y} \quad \text { Measurement error (position) (Luz Mery) } \\
& \mathbf{E}_{x}=\mathbf{X}-\mathbf{1}_{N} \mu_{x} \quad \text { Deviations from mean (Luz Mery) }
\end{aligned}
$$

Sample and Remainder
$i=1, \ldots, n$
$Y_{I}=\sum_{i=1}^{n} Y_{i} \quad$ Sample total of Expected Respons
$Y_{I I}=\sum_{i=n+1}^{N} Y_{i} \quad$ Remainder total
$Y_{I}^{*}=\sum_{i=1}^{n} Y_{i k}^{*} \quad$ Sample total of Measured response where when $r_{s}=1$ for all $s=1, \ldots, N$
$Y_{I I}^{*}=\sum_{i=n+1}^{N} Y_{i k}^{*}$
Remainder total of Measured response where when $r_{s}=1$ for all $s=1, \ldots, N$
$Y_{w I}=\sum_{i=1}^{n} Y_{w i} \quad$ Sample total for weighted expected response
$Y_{w I I}=\sum_{i=n+1}^{N} Y_{w i} \quad$ Remainder total for weighted expected response
$Y_{w I}^{*}=\sum_{i=1}^{n} Y_{w i k}^{*} \quad$ Sample total weighted measured response when $r_{s}=1$ for all $s=1, \ldots, N$
$Y_{w I I}^{*}=\sum_{i=n+1}^{N} Y_{w i k}^{*} \quad$ Remainder total weighted measured response when $r_{s}=1$ for all $s=1, \ldots, N$
$\bar{Y}_{I}=\frac{1}{n} \sum_{i=1}^{n} Y_{i} \quad$ Sample average
$\bar{Y}_{I I}=\frac{1}{N-n} \sum_{i=n+1}^{N} Y_{i} \quad$ Remainder average
$\bar{X}_{k I}=\frac{1}{n} \sum_{i=1}^{n} X_{k i} \quad$ Sample mean of auxiliary variable (Wenjun)
$\bar{X}_{I}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \quad$ Sample mean for one auxiliary variable (Luz Mery)
$\bar{Y}_{I}^{*}=\frac{1}{n} \sum_{i=1}^{n} Y_{i k}^{*}$ or $\bar{Y}^{*} \quad$ Sample average of Measured response where when $r_{s}=1$ for all $s=1, \ldots, N$
$\bar{Y}_{I I}^{*}=\frac{1}{N-n} \sum_{i=n+1}^{N} Y_{i k}^{*} \quad$ Remainder average of Measured response where when $r_{s}=1$ for
all $s=1, \ldots, N$
$\bar{Y}_{I}^{+}=\frac{1}{n} \sum_{i=1}^{n} Y_{i}^{+} \quad$ Sample mean for Regression predictor with unit measurement error (Luz

Mery)

$\bar{Y}_{I}^{\diamond+}=\frac{1}{n} \sum_{i=1}^{n} Y_{i}^{\diamond+} \quad$ Regression problem (Luz Mery)

Vectors

$$
\begin{aligned}
& \mathbf{y}_{I}=\left(\left(y_{s}\right)\right)=\left(\begin{array}{llll}
y_{1} & y_{2} & \cdots & y_{n}
\end{array}\right)^{\prime} \\
& \mathbf{y}_{I I}=\left(\left(y_{s}\right)\right)=\left(\begin{array}{llll}
y_{n+1} & y_{n+2} & \cdots & y_{N}
\end{array}\right)^{\prime} \\
& \mathbf{y}_{w 1}=\left(\left(y_{w s}\right)\right)=\left(\begin{array}{llll}
y_{w 1} & y_{w 2} & \cdots & y_{w n}
\end{array}\right)^{\prime} \\
& \mathbf{y}_{w I I}=\left(\left(y_{w s}\right)\right)=\left(\begin{array}{llll}
y_{w(n+1)} & y_{w(n+2)} & \cdots & y_{w N}
\end{array}\right)^{\prime} \\
& \mathbf{Y}_{R I}=\left(\left(Y_{s k}\right)\right)=\left(\begin{array}{llll}
Y_{1 k} & Y_{2 k} & \cdots & Y_{n k}
\end{array}\right)^{\prime} \\
& \mathbf{Y}_{R I I}=\left(\left(Y_{s k}\right)\right)=\left(\begin{array}{llll}
Y_{(n+1) k} & Y_{(n+1) k} & \cdots & Y_{N k}
\end{array}\right)^{\prime} \\
& \mathbf{Y}_{w R I}=\left(\left(Y_{w s k}\right)\right)=\left(\begin{array}{llll}
Y_{w 1 k} & Y_{w s k} & \cdots & Y_{w n k}
\end{array}\right)^{\prime} \\
& \mathbf{Y}_{w R I I}=\left(\left(Y_{w s k}\right)\right)=\left(\begin{array}{llll}
Y_{w(n+1) k} & Y_{w(n+2) k} & \cdots & Y_{w N k}
\end{array}\right)^{\prime} \\
& \mathbf{Y}_{I}=\left(\left(Y_{i}\right)\right)=\left(\begin{array}{llll}
Y_{1} & Y_{2} & \cdots & Y_{n}
\end{array}\right)^{\prime} \\
& \mathbf{Y}_{S}=\left(\left(Y_{i}\right)\right)=\left(\begin{array}{llll}
Y_{1} & Y_{2} & \cdots & Y_{n}
\end{array}\right)^{\prime} \quad \text { used by Viviana } \\
& \mathbf{Y}_{I I}=\left(\left(Y_{i}\right)\right)=\left(\begin{array}{llll}
Y_{n+1} & Y_{n+2} & \cdots & Y_{N}
\end{array}\right)^{\prime} \\
& \mathbf{Y}_{R}=\left(\left(Y_{i}\right)\right)=\left(\begin{array}{llll}
Y_{n+1} & Y_{n+2} & \cdots & Y_{N}
\end{array}\right)^{\prime} \quad \text { used by Viviana } \\
& \mathbf{Y}_{I}^{*}=\left(\left(Y_{i k}^{*}\right)\right)=\left(\begin{array}{llll}
Y_{1 k}^{*} & Y_{2 k}^{*} & \cdots & Y_{n k}^{*}
\end{array}\right)^{\prime} \quad \text { where } \mathbf{Y}_{I}^{*}=\left(\begin{array}{ll}
\mathbf{I}_{n} & \mathbf{0} \\
n \times N-n
\end{array}\right) \mathbf{Y}^{*} \text { when } r_{s}=1 \text { for } \\
& \text { all } s=1, \ldots, N \\
& \mathbf{Y}_{I I}^{*}=\left(\left(Y_{i k}^{*}\right)\right)=\left(\begin{array}{llll}
Y_{(n+1) k}^{*} & Y_{(n+2) k}^{*} & \cdots & Y_{N k}^{*}
\end{array}\right)^{\prime} \quad \text { where } \quad \mathbf{Y}_{I I}^{*}=\left(\begin{array}{cc}
\underset{(N-n) \times n}{ } & \mathbf{I}_{N-n}
\end{array}\right) \mathbf{Y}^{*} \text { when } r_{s}=1 \text { for } \\
& \text { all } s=1, \ldots, N \\
& \mathbf{Y}_{w I}=\left(\left(\begin{array}{llll}
Y_{w i}
\end{array}\right)\right)=\left(\begin{array}{llll}
Y_{w 1} & Y_{w 2} & \cdots & Y_{w n}
\end{array}\right)^{\prime} \\
& \mathbf{Y}_{w I I}=\left(\left(Y_{w i}\right)\right)=\left(\begin{array}{llll}
Y_{w(n+1)} & Y_{w(n+2)} & \cdots & Y_{w N}
\end{array}\right)^{\prime} \\
& \mathbf{Y}_{w I}^{*}=\left(\left(Y_{w i k}^{*}\right)\right)=\left(\begin{array}{llll}
Y_{w 1 k}^{*} & Y_{w 2 k}^{*} & \cdots & Y_{w k k}^{*}
\end{array}\right)^{\prime} \\
& \mathbf{Y}_{w I I}^{*}=\left(\left(Y_{w i k}^{*}\right)\right)=\left(\begin{array}{llll}
Y_{w(n+1) k}^{*} & Y_{w(n+2) k}^{*} & \cdots & Y_{w N k}^{*}
\end{array}\right)^{\prime}
\end{aligned}
$$

$\mathbf{Z}_{S}=\left(\begin{array}{cccc}Z_{01} & Z_{11} & \cdots & Z_{p 1} \\ Z_{02} & Z_{12} & \cdots & Z_{p 2} \\ \vdots & \vdots & \ddots & \vdots \\ Z_{0 n} & Z_{1 n} & \cdots & Z_{p n}\end{array}\right)$
where $\mathbf{Z}_{S}=\left(\begin{array}{ll}\mathbf{I}_{n} & \mathbf{0} \\ n \times N-n\end{array}\right) \mathbf{Z}$
$\mathbf{Z}_{R}=\left(\begin{array}{cccc}Z_{0, n+1} & Z_{1, n+1} & \cdots & Z_{p, n+1} \\ Z_{0, n+2} & Z_{1, n+2} & \cdots & Z_{p, n+2} \\ \vdots & \vdots & \ddots & \vdots \\ Z_{0, N} & Z_{1, N} & \cdots & Z_{p, N}\end{array}\right) \quad$ where $\mathbf{Z}_{R}=\left(\begin{array}{cc}\mathbf{0} & \mathbf{I}_{N-n}\end{array}\right) \mathbf{Z}$
$\mathbf{Z}_{I}=\operatorname{vec}\left(\mathbf{Z}_{S}\right) \quad$ Sample (Wenjun)
$\mathbf{Z}_{I I}=\operatorname{vec}\left(\mathbf{Z}_{R}\right) \quad$ Remainder (Wenjun)
$\mathbf{Z}_{I}^{+}=\mathbf{K}_{I} \mathbf{R} \mathbf{Z}^{+} \quad$ Sample random variables in regression (Luz Mery)
$\mathbf{Z}_{I I}^{+}=\mathbf{K}_{I I} \mathbf{R} \mathbf{Z}^{+} \quad$ Remainder random variables in regression (Luz Mery)
$\tilde{\mathbf{Z}}_{I}=\left(\begin{array}{llll}\tilde{Y}_{1} & \tilde{Y}_{2} & \cdots & \tilde{Y}_{n}\end{array} \left\lvert\,\left(\begin{array}{llll}\left.X_{1}-\mu_{x}\right) & \left(X_{2}-\mu_{x}\right) & \cdots & \left.\left(X_{n}-\mu_{x}\right)\right)^{\prime} \text { Regression with position error (Luz }\end{array}\right.\right.\right.$ Mery)

Expected Values, Targets, Predictors

$P=\mathbf{g}^{\prime}\binom{\mathbf{Y}_{I}}{\mathbf{Y}_{I I}} \quad$ Target in problems with a simple population
$\theta=\mathbf{c}^{\prime} \mathbf{Y}=\sum_{i=1}^{N} c_{i} Y_{i} \quad$ Target in problems with auxiliary variables, by Wenjun.
$\theta=\mathbf{G}^{\prime} \mathbf{Y}$
Target in domain problems, by Viviana
$\theta=\mathbf{G}_{*}^{\prime} \mathbf{y}$
Alternative target in domain problems, by Viviana
$T=\mathbf{c}^{\prime} \mathbf{Y}=\sum_{i=1}^{N} c_{i} Y_{i} \quad$ Target in regression problem with error by Luz Mery
$\hat{P}=\left(\mathbf{g}_{I}^{\prime}+\mathbf{a}^{\prime}\right) \mathbf{Y}_{I} \quad$ Best linear unbiased predictor of target
$\hat{P}=\mathbf{w}^{\prime} \mathbf{Z}_{I} \quad$ Best linear unbiased predictor of target with auxiliary variables (Wenjun)
$\hat{T}^{+}=\left(\mathbf{g}_{I}^{\prime}+\hat{\mathbf{a}}^{\prime}\right) \mathbf{Z}_{I}^{+} \quad$ Regression predictor (Luz Mery)
$\mathbf{a}^{\prime} \quad$ Constants to determine to optimally predict the target
$f(\mathbf{a}, \boldsymbol{\lambda})=\mathbf{a}^{\prime} \mathbf{V}_{I} \mathbf{a}-2 \mathbf{g}_{I I}^{\prime} \mathbf{V}_{I, I} \mathbf{a}+\mathbf{g}_{I I}^{\prime} \mathbf{V}_{I I} \mathbf{g}_{I I}+2\left(\mathbf{a}^{\prime} \mathbf{X}_{I}-\mathbf{g}_{I I}^{\prime} \mathbf{X}_{I I}\right) \lambda \quad$ Function to minimize for EMSE
λ

LaGrangian multipliers

$$
\begin{aligned}
& \hat{\mathbf{w}}^{\prime}=\mathbf{V}_{I}^{-1}\left\{\mathbf{V}_{I, I I}+\mathbf{G}_{I}\left(\mathbf{G}_{I}^{\prime} \mathbf{V}_{I}^{-1} \mathbf{G}_{I}\right)^{-1}\left(\mathbf{G}_{I I}^{\prime}-\mathbf{G}_{I}^{\prime} \mathbf{V}_{I}^{-1} \mathbf{V}_{I, I I}\right)\right\} \mathbf{C}_{I I} \\
& =N \bar{C}_{I I}\left((1-f) \frac{\mathbf{1}_{n}^{\prime}}{n}:-\boldsymbol{\beta}^{\prime} \otimes \frac{\mathbf{1}_{n}^{\prime}}{n}\right) \\
& \hat{\mathbf{a}}=\left[\mathbf{V}_{I}^{-1}-\mathbf{V}_{I}^{-1} \mathbf{X}_{I}\left(\mathbf{X}_{I}{ }^{\prime} \mathbf{V}_{I}^{-1} \mathbf{X}_{I}\right)^{-1} \mathbf{X}_{I}{ }^{\prime} \mathbf{V}_{I}^{-1}\right] \mathbf{V}_{I, I I} \mathbf{g}_{I I}+\mathbf{V}_{I}^{-1} \mathbf{X}_{I}\left(\mathbf{X}_{I}{ }^{\prime} \mathbf{V}_{I}^{-1} \mathbf{X}_{I}\right)^{-1} \mathbf{X}_{I I}{ }^{\prime} \mathbf{g}_{I I} \quad \text { Min EMSE constants } \\
& \hat{\mathbf{a}}=\binom{1}{-\frac{\sigma_{x y}}{\sigma_{x}^{2}}} \otimes\left[\frac{D^{+}}{n} \mathbf{1}_{n}-\left(1-k^{+}\right) \mathbf{C}_{I}\right]+\bar{c}_{I I}\binom{1}{-\frac{\sigma_{x y}}{\sigma_{x}^{2}}} \otimes \mathbf{1}_{n} \quad \text { Min EMSE constants for regression with } \\
& \text { error (Luz Mery) } \\
& \tilde{\mathbf{a}}=\binom{1}{-\frac{\sigma_{x y}}{\sigma_{x}^{2}}} \otimes\left[\frac{\tilde{D}}{n}\left(\underset{i=1}{\oplus} \tilde{k}_{i}^{*}\right) \mathbf{1}_{n}-\left[{\left.\left.\underset{i=1}{n} c_{i}\left(1-\tilde{k}_{i}\right)\right] \mathbf{1}_{n}\right]+\bar{c}_{I I}\binom{1}{-\frac{\sigma_{x y}}{\sigma_{x}^{2}}} \otimes \mathbf{1}_{n} \quad \text { Regression (Luz Mery) }}^{2}\right.\right. \\
& \hat{\boldsymbol{\theta}}^{*}=\mathbf{G}_{R}^{\prime}\left(\mathbf{V}_{R}-\mathbf{V}_{R S} \mathbf{V}_{S}^{-1} \mathbf{V}_{S R}\right) \mathbf{G}_{R}+\mathbf{G}_{R}^{\prime}\left(\mathbf{X}_{R}-\mathbf{V}_{R S} \mathbf{V}_{S}^{-1} \mathbf{X}_{S}\right)\left(\mathbf{V}_{R S} \mathbf{V}_{S}^{-1} \mathbf{V}_{S R}\right)^{-1}\left(\mathbf{X}_{R}-\mathbf{V}_{R S} \mathbf{V}_{S}^{-1} \mathbf{X}_{S}\right) \mathbf{G}_{R} \quad \text { M-optimal } \\
& \operatorname{var}\left(\mathbf{k}^{\mathbf{\prime}} \hat{\boldsymbol{\theta}}^{*}\right) \leq \operatorname{var}\left(\mathbf{k}^{\prime} \hat{\boldsymbol{\theta}}\right) \quad \text { M-optimality criteria for } \hat{\boldsymbol{\theta}}^{*} \text {, a linear, unbiased predictor } \\
& E_{\xi}\binom{\mathbf{Y}_{I}}{\mathbf{Y}_{I I}}=\binom{\mathbf{X}_{I}}{\mathbf{X}_{I I}} \boldsymbol{\alpha} \\
& E\binom{\mathbf{Y}_{S}}{\mathbf{Y}_{R}}=\binom{\mathbf{X}_{S}}{\mathbf{X}_{R}} \boldsymbol{\beta} \quad \quad \text { Expected value used by Viviana for domain problems } \\
& E_{\xi R}\binom{\mathbf{Y}_{I}^{*}}{\mathbf{Y}_{I I}^{*}}=\binom{\mathbf{X}_{I}}{\mathbf{X}_{I I}} \boldsymbol{\alpha} \\
& \operatorname{var}_{\xi}\binom{\mathbf{Y}_{I}}{\mathbf{Y}_{I I}}=\left(\begin{array}{cc}
\mathbf{V}_{I} & \mathbf{V}_{I I I I} \\
\mathbf{V}_{I I, I} & \mathbf{V}_{I I}
\end{array}\right) \\
& \operatorname{var}\binom{\mathbf{Y}_{S}}{\mathbf{Y}_{R}}=\left(\begin{array}{cc}
\mathbf{V}_{S} & \mathbf{V}_{S R} \\
\mathbf{V}_{R S} & \mathbf{V}_{R}
\end{array}\right) \quad \text { Variance used by Viviana for domain problems. } \\
& \operatorname{var}_{\xi R}\binom{\mathbf{Y}_{I}^{*}}{\mathbf{Y}_{I I}^{*}}=\left(\begin{array}{cc}
\mathbf{V}_{I}^{*} & \mathbf{V}_{I, I I}^{*} \\
\mathbf{V}_{I I, I}^{*} & \mathbf{V}_{I I}^{*}
\end{array}\right) \\
& \operatorname{var}_{\xi R}\left(\begin{array}{c}
\mathbf{Y}_{I}^{*} \\
\overline{\mathbf{Y}}_{I} \\
\overline{\mathbf{Y}}_{I I}
\end{array}\right)=\left(\begin{array}{ccc}
\mathbf{V}_{I}^{*} & \mathbf{V}_{I} & \mathbf{V}_{I, I I} \\
\mathbf{V}_{I} & \mathbf{V}_{I} & \mathbf{V}_{I, I I} \\
\mathbf{V}_{I I, I} & \mathbf{V}_{I I, I} & \mathbf{V}_{I I}
\end{array}\right) \\
& \mathbf{V}_{R I}^{*}=\mathbf{V}_{I}^{*}-\mathbf{V}_{I}
\end{aligned}
$$

$\mathbf{V}_{I}^{*}=\mathbf{I}_{n}\left(\sigma^{2}+\sigma_{e}^{2}\right)-\frac{1}{N} \mathbf{J}_{n} \sigma^{2}$
$\mathbf{V}_{I}^{+}=\boldsymbol{\Sigma} \otimes \mathbf{P}_{n, N}+\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right) \bar{\sigma}_{e}^{2} \otimes \mathbf{I}_{n} \quad$ Regression partitioned variance (Luz Mery)
$\mathbf{V}_{I I}^{+}=\boldsymbol{\Sigma} \otimes \mathbf{P}_{N-n, N}+\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right) \bar{\sigma}_{e}^{2} \otimes \mathbf{I}_{N-n} \quad$ Regression variance (Luz Mery)
$\mathbf{V}_{I, I I}^{+}=\frac{-1}{N} \boldsymbol{\Sigma} \otimes \mathbf{1}_{n} \mathbf{1}_{N-n}^{\prime}$
Regression variance (Luz Mery)

Other Terms Defined for Predictors

$\hat{\boldsymbol{\alpha}}^{*}=\left(\mathbf{X}_{I}^{\prime} \mathbf{V}_{I}^{*-1} \mathbf{X}_{I}\right)^{-1} \mathbf{X}_{I}^{\prime} \mathbf{V}_{I}^{*-1} \mathbf{Y}_{I}^{*}$
$\hat{\boldsymbol{\alpha}}=\left(\mathbf{X}_{I}{ }^{\prime} \mathbf{V}_{I}^{-1} \mathbf{X}_{I}\right)^{-1} \mathbf{X}_{I}{ }^{\prime} \mathbf{V}_{I}^{-1} \mathbf{Y}_{I}$
$\hat{\alpha}=\left(\mathbf{X}_{I}{ }^{\prime} \mathbf{V}_{I}^{*-1} \mathbf{X}_{I}\right)^{-1} \mathbf{X}_{I}{ }^{\prime} \mathbf{V}_{I}^{*-1} \mathbf{Y}_{I}^{*}$
$\tilde{\mu}=\sum_{i=1}^{n} \frac{\tilde{k}_{i}}{\left(\sum_{j=1}^{n} \tilde{k}_{j}\right)} \tilde{Y}_{i}$
Weighted sample mean with measurement error associated with position
$\tilde{\mu}^{+}=\sum_{i=1}^{n} \frac{k_{i}^{+}}{\left(\sum_{j=1}^{n} k_{j}^{+}\right)} \tilde{Y}_{i} \quad$ Weighted sample mean for partially conditional RP model with measurement error
$\mu_{Y_{i}^{\circ+}}=\sum_{i=1}^{n} \frac{k_{i}^{\diamond}}{\left(\sum_{j=1}^{n} k_{j}^{\diamond}\right)} Y_{i}^{\diamond+} \quad$ Regression problem (Luz Mery)
$\mu_{X_{I}}=\sum_{i=1}^{n} \frac{k_{i}^{\diamond}}{\left(\sum_{j=1}^{n} k_{j}^{\diamond}\right)} X_{i} \quad$ Regression problem (Luz Mery)
$\hat{\mu}_{y}^{+}=\bar{Y}_{I}^{+}-\frac{\sigma_{x y}}{\sigma_{x}^{2}}\left(\bar{X}_{I}-\mu_{x}\right) \quad$ Mean used in MSE for Regression Estimator of Luz Mery
$\hat{B}^{+}=N\left[\bar{Y}_{i}^{\diamond+}-\frac{\sigma_{y^{0} x}}{\sigma_{x}^{2}}\left(\bar{X}_{I}-\mu_{x}\right)\right] \quad$ Regression problem (Luz Mery)

$$
\begin{array}{ll}
\tilde{B}=N\left[\mu_{Y_{I^{\circ}}^{0+}}-\frac{\sigma_{y^{0} x}}{\sigma_{x}^{2}}\left(\mu_{X_{I}}-\mu_{x}\right)\right] & \text { Regression problem (Luz Mery) } \\
k_{i}^{\diamond}=\frac{\sigma_{y^{\bullet}}^{2}\left(1-\rho_{x y^{\circ}}^{2}\right)}{\sigma_{i}^{\Delta 2}+\sigma_{y^{\bullet}}^{2}\left(1-\rho_{x y^{\circ}}^{2}\right)} & \text { Regression problem, (Luz Mery) } \\
\sigma_{i}^{\Delta 2}=\sum_{s=1}^{N} U_{i S} X_{s}^{\Delta 2} \sigma_{s e}^{2} & \text { Regression problem (Luz Mery) }
\end{array}
$$

Clustered/Stratified Population

Units and Response

$s=1, \ldots, N$	Cluster Labels (used by Ed)
$t=1, \ldots, M_{s}$	Unit label for cluster s (used by Ed)
$j=1, \ldots, J$	Stratum labels (used by Viviana)
$\wp_{j}=\left\{1,2, \cdots, N_{j}\right\}$	Unit labels for stratum j (used by Viviana)
$i=1, \ldots, I$	Domain label in each stratum
$N_{i j}$	Number of units in domain i in stratum j
$N_{j}=\sum_{i=1}^{I} N_{i j}$	Number of units in the population
$\square=\sum_{s=1}^{N} M_{s}$	Index for replication
$k=1, \ldots, r_{s t}$	Expected Response for unit t in cluster s
$y_{s t}$ for $s=1, \ldots, N ; t=1, \ldots, M_{s}$	Expected Response for unit k in stratum j

$w_{s j} \quad$ Weight for the unit in position j in cluster s (Ed)
$w_{s}=w_{s j} \quad$ Weight in special case that all position weights are equal in cluster s
$W_{\text {stk }}$ for $s=1, \ldots, N ; t=1, \ldots, M_{s} ; k=1, \ldots, r_{s} \quad$ Response error. for $k^{\text {th }}$ replication of unit t in cluster s
$Y_{\text {stk }}=y_{s t}+W_{\text {stk }}$ for $k=1, \ldots, r_{s}$

Vectors

$$
\begin{aligned}
& \mathbf{y}_{s}=\left(\left(y_{s t}\right)\right)=\left(\begin{array}{llll}
y_{s 1} & y_{s 2} & \cdots & y_{s M_{s}}
\end{array}\right)^{\prime} \\
& \mathbf{y}_{j}=\left(\left(y_{j k}\right)\right)=\left(\begin{array}{llll}
y_{j 1} & y_{j 2} & \cdots & y_{j N_{j}}
\end{array}\right)^{\prime} \\
& \mathbf{y}=\left(\left(\mathbf{y}_{s}^{\prime}\right)\right)^{\prime}=\left(\begin{array}{llll}
\mathbf{y}_{1}^{\prime} & \mathbf{y}_{2}^{\prime} & \cdots & \mathbf{y}_{N}^{\prime}
\end{array}\right)^{\prime} \\
& \boldsymbol{\varepsilon}_{s}=\left(\left(\varepsilon_{s t}\right)\right)=\left(\begin{array}{llll}
\varepsilon_{s 1} & \varepsilon_{s 2} & \cdots & \varepsilon_{s M_{s}}
\end{array}\right)^{\prime} \\
& \boldsymbol{\varepsilon}=\left(\left(\boldsymbol{\varepsilon}_{s}^{\prime}\right)\right)^{\prime}=\left(\begin{array}{llll}
\boldsymbol{\varepsilon}_{1}^{\prime} & \boldsymbol{\varepsilon}_{2}^{\prime} & \cdots & \boldsymbol{\varepsilon}_{N}^{\prime}
\end{array}\right)^{\prime} \\
& \mathbf{W}_{s}=\left(\left(\begin{array}{llll}
W_{s t k}
\end{array}\right)\right)=\left(\begin{array}{llll}
W_{s 1 k} & W_{s 2 k} & \cdots & W_{s M k}
\end{array}\right)^{\prime}
\end{aligned}
$$

$$
\mathbf{W}=\left(\left(\mathbf{W}_{s}^{\prime}\right)\right)^{\prime}=\left(\begin{array}{llll}
\mathbf{W}_{1}^{\prime} & \mathbf{W}_{2}^{\prime} & \cdots & \mathbf{W}_{N}^{\prime}
\end{array}\right)^{\prime}
$$

Response for $k^{t h}$ replication of unit t in cluster s

Expected response for units in cluster s
Expected response for units in stratum j (Viviana)
Expected response for all units and clusters.
Deviation of unit t from expected value of cluster s
Vector of deviations of units from cluster expected values

Response error vector (for $r_{s t}=1$ for all $t=1, \ldots, M_{s}$) for cluster s

Response error vector for all units and clusters (for $r_{s t}=1$ for all $\left.s=1, \ldots, N ; t=1, \ldots, M_{s}\right)$.

Parameters and Constants

m_{s}	Sample size for cluster s (Ed)
n_{j}	Sample size for stratum j (Viviana)
$f_{s}=\frac{m_{s}}{M_{s}}$	

$\mathbf{K}_{I}=\left(\begin{array}{l:l}\mathbf{I}_{n} & \underset{n \times(N-n)}{\mathbf{0}}\end{array}\right) \otimes\left(\begin{array}{l:l}\mathbf{I}_{m} & \underset{m \times(M-m)}{\mathbf{0}}\end{array}\right) \quad$ Matrix to form sample response vector when $M_{s}=M$ for all $s=1, \ldots, N$
$\mathbf{K}_{I I}=\left(\begin{array}{c}\binom{\binom{\mathbf{I}_{n}}{\underset{n \times(N-n)}{\mathbf{0}})}\left(\underset{(M-m) \times m}{\mathbf{0}} \mathbf{I}_{M-m}\right)}{\left(\underset{(N-n) \times n}{\mathbf{0}}<\mathbf{I}_{N-n}\right) \otimes \mathbf{I}_{M}}\end{array}\right.$ Matrix to form remainder response vector when $M_{s}=M$

$$
\text { for all } s=1, \ldots, N
$$

$$
\mathbf{K}=\left(\mathbf{K}_{I}^{\prime} \mid \mathbf{K}_{I I}^{\prime}\right)^{\prime}
$$

$$
\mathbf{X}_{I}=\mathbf{K}_{I} \mathbf{X}
$$

$\mathbf{X}_{I}=\left[\frac{1}{N} \mathbf{1}_{n} \otimes\left(\underset{s=1}{\oplus} w_{s} m_{s}\right)\right] \quad$ Used for sample in Partially collapsed unequal size model (Ed)
$\mathbf{X}_{I I}=\mathbf{K}_{I I} \mathbf{X}$
$\mathbf{X}_{I I}=\left(\frac{\frac{1}{N} \mathbf{1}_{N-n} \otimes\left(\underset{s=1}{\oplus} w_{s} m_{s}\right)}{\frac{1}{N} \mathbf{1}_{N} \otimes\left(\underset{s=1}{N} w_{s}\left(M_{s}-m_{s}\right)\right)}\right)$ Used for remainder in Partially collapsed unequal size model (Ed)
$\mathbf{g}^{\prime}=\mathbf{c}^{\prime} \otimes \mathbf{1}_{\square}^{\prime} \quad$ Two-stage unbalanced problem (Ed)
$\mathbf{g}_{I}=\mathbf{K}_{I} \mathbf{g}$
$\mathbf{g}_{I}^{\prime}=\mathbf{c}_{I}^{\prime} \otimes \mathbf{1}_{N}^{\prime} \quad$ Coefficients for partially expanded sample (Ed)
$\mathbf{g}_{I I}=\mathbf{K}_{I I} \mathbf{g}$
$\mathbf{g}_{I I}^{\prime}=\left(\mathbf{c}_{I I}^{\prime} \otimes \mathbf{1}_{N}^{\prime} \mid \mathbf{c}^{\prime} \otimes \mathbf{1}_{N}^{\prime}\right) \quad$ Coefficients for partially expanded remainder (Ed)
$\mathbf{g}_{I I}^{\prime}=\left(\begin{array}{llll}\mathbf{g}_{1, I I}^{\prime} & \mathbf{g}_{2, I I}^{\prime}\end{array}\right)$
$\mathbf{g}_{1, I I}^{\prime}=\mathbf{g}_{I I}^{\prime}\left[\left(\begin{array}{c}\left(\begin{array}{c}\mathbf{I}_{n} \\ -\frac{-}{\mathbf{0}}- \\ (N-n) \times n\end{array}\right)\end{array}\right) \otimes\binom{\mathbf{0} \mathbf{0}-(M-m)}{-\underset{M-m}{ }}\right]$
$\mathbf{g}_{2, I I}^{\prime}=\mathbf{g}_{I I}^{\prime}\left[\left(\begin{array}{c}\mathbf{0} \\ \frac{n \times(N-n)}{-} \\ \mathbf{I}_{N-n}^{--}\end{array}\right) \otimes \mathbf{I}_{M}\right]$
$\mathbf{G}_{s}^{\prime} \quad$ Constants to define target in stratified domain problem for sample (Viviana)
$\mathbf{G}_{R}^{\prime} \quad$ Constants to define target in stratified domain problem for remainder (Viviana)
$\mathbf{e}_{i}^{\prime}=\left(\begin{array}{c:c}\mathbf{e}_{i I}^{\prime} & \underset{\mathbf{e}_{i I I}^{\prime}}{1 \times n} \\ 1 \times(N-n)\end{array}\right)$
$\mathbf{g}_{i}=\left(\left(g_{i j}\right)\right)=\left(\begin{array}{llll}g_{i 1} & g_{i 2} & \cdots & g_{i M}\end{array}\right)^{\prime} \quad$ Constant multiplier to define target when $M_{s}=M$ for all

$$
s=1, \ldots, N
$$

$\mathbf{g}=\left(\left(\begin{array}{llll}\mathbf{g}_{i}\end{array}\right)^{\prime}=\left(\begin{array}{llll}\mathbf{g}_{1}^{\prime} & \mathbf{g}_{2}^{\prime} & \cdots & \mathbf{g}_{N}^{\prime}\end{array}\right)^{\prime} \quad\right.$ Constant multiplier to define target
$\mathbf{b}=\left(\left(b_{i}\right)\right)=\left(\begin{array}{llll}b_{1} & b_{2} & \cdots & b_{N}\end{array}\right)^{\prime} \quad$ Vector of constants to define target
$\mathbf{b}^{\prime}=\left(\begin{array}{c:c}\mathbf{b}_{I}^{\prime} & \underset{\mathbf{b}_{I I}^{\prime}}{\prime} \\ 1 \times n & 1 \times(N-n)\end{array}\right)$
$\mu_{s}=\frac{1}{M_{s}} \sum_{t=1}^{M_{s}} y_{s t} \quad$ Mean for cluster $s \quad$ (Ed)
$d_{s}=M_{s} w_{s} \mu_{s} \quad$ Used in partially collapsed unequal cluster sizes (Ed)
$\beta_{j}=\frac{1}{N_{j}} \sum_{k=1}^{N_{j}} y_{j k} \quad$ Mean for stratum $j \quad$ (Viviana)
$\mu=\frac{1}{N} \sum_{s=1}^{N} \mu_{s}$
$\beta_{s}=\mu_{s}-\mu$
$\varepsilon_{s t}=y_{s t}-\mu_{s} \quad$ so that $y_{s t}=\mu+\beta_{s}+\varepsilon_{s t}$
$\sigma^{2}=\frac{1}{N-1} \sum_{s=1}^{N}\left(\mu_{s}-\mu\right)^{2}$
$\sigma_{s}^{2}=\frac{1}{M_{s}-1} \sum_{t=1}^{M_{s}}\left(y_{s t}-\mu_{s}\right)^{2} \quad$ Variance of units in cluster s
$v_{s e}^{* 2}=\left(\frac{1-f_{s}}{f_{s}}\right) \frac{M_{s} w_{s}^{2} \sigma_{s}^{2}}{N} \quad$ Used in partially collapsed expanded unequal cluster (Ed)
$\sigma_{j}^{2}=\frac{1}{N_{j}-1} \sum_{k=1}^{N_{j}}\left(y_{j k}-\mu_{j}\right)^{2} \quad$ Variance of units in stratum j (Viviana)
$\sigma_{e}^{2}=\frac{1}{N} \sum_{s=1}^{N} \sigma_{s}^{2} \quad$ Average unit variance over clusters
$\bar{\sigma}_{s}^{2}=\frac{1}{M_{s}} \sum_{t=1}^{M_{s}} \sigma_{s t}^{2} \quad$ Average replication variance over units in cluster s
$\sigma_{r}^{2}=\frac{1}{N M_{s}} \sum_{s=1}^{N} \sum_{t=1}^{M_{s}} \sigma_{s t}^{2}$

Other Variances for Other Mixed Model Predictors

$v_{i}=\sigma^{2}+\frac{\sigma_{i}^{2}}{m_{i}} \quad$ variance for mixed model predictors
$w_{i}=\frac{1 / v_{i}}{\sum_{i^{*}=1}^{n} 1 / v_{i^{*}}}$
Weight for variance in mixed model predictors
$k_{i}=\frac{\sigma^{2}}{v_{i}}$
Shrinkage constant for mixed model predictor
δ^{2}
Variance of cluster means for Scott and Smith predictor
$v_{i}^{*}=\delta^{2}+\frac{\sigma_{i}^{2}}{m_{i}} \quad$ Variance for Scott and Smith's predictor
$w_{i}^{*}=\frac{1 / v_{i}^{*}}{\sum_{i=1}^{n} 1 / v_{i}^{*}} \quad$ Weight for variance in Scott and Smith's predictor
$k_{i}^{*}=\frac{m_{i} \delta^{2}}{m_{i} \delta^{2}+\sigma_{i}^{2}} \quad$ Shrinkage constant for Scott and Smith’s predictor
$\sigma^{* 2}=\sigma^{2}-\frac{\sigma_{e}^{2}}{M} \quad$ Variance parameter defined for random permutation model
$\rho_{s}=\frac{\sigma^{2}}{\sigma^{2}+\sigma_{e}^{2}} \quad$ Intra class correlation of clusters
$\rho_{t}=\frac{\sigma_{e}^{2}}{\sigma_{e}^{2}+\sigma_{r}^{2}} \quad$ Intra class correlation of units with replication error
$k^{*}=\frac{m \sigma^{* 2}}{m \sigma^{* 2}+\left(\sigma_{e}^{2}+\sigma_{r}^{2}\right)} \quad$ Random permutation shrinkage constant with replication error where
$M_{s}=M$ and $m_{s}=m$ for all $s=1, \ldots, N$
$k=\frac{m \sigma^{* 2}}{m \sigma^{* 2}+\sigma_{e}^{2}}$
Random permutation shrinkage constant for 2-stage cluster sampling with no measurement error where $M_{s}=M$ and $m_{s}=m$ for all $s=1, \ldots, N$.
$k_{r}^{*}=\frac{m \sigma^{* 2}+\sigma_{e}^{2}}{m \sigma^{* 2}+\sigma_{e}^{2}+\sigma_{r}^{2}} \quad$ Additional random permutation shrinkage factor when where $M_{s}=M$ and $m_{s}=m$ for all $s=1, \ldots, N$
$k_{s}=\frac{d_{s}^{2}}{d_{s}^{2}+(N-1) v_{s e}^{* 2}} \quad$ Partially collapsed unequal cluster constant (Ed)
$\bar{k}=\frac{1}{N} \sum_{s=1}^{N} k_{s} \quad$ Average using partially collapsed unequal cluster constant (Ed)
$k_{s}^{*}=k_{s}-\frac{k_{s}}{d_{s}} \frac{1}{N} \sum_{s^{*}=1}^{N}\left(\frac{1-k_{s^{*}}}{1-\bar{k}}\right) d_{s^{*}} \quad$ Constant for partially collapsed unequal clusters (Ed)

Vectors

$\boldsymbol{\mu}=\left(\left(\mu_{s}\right)\right)=\left(\begin{array}{llll}\mu_{1} & \mu_{2} & \cdots & \mu_{N}\end{array}\right)^{\prime}$	Cluster means (Ed)
$\boldsymbol{\beta}^{\prime}=\left(\begin{array}{llll}\beta_{1} & \beta_{2} & \cdots & \beta_{N}\end{array}\right)$	Vector of cluster effects (Ed)
$\boldsymbol{\beta}^{\prime}=\left(\begin{array}{llll}\beta_{1} & \beta_{2} & \cdots & \beta_{J}\end{array}\right)$	Vector of strata means (Viviana)
$\mathbf{X}=1$	Fixed parameter design matrix
$\underset{\square \times N}{\mathbf{Z}}=\stackrel{N}{\oplus}{ }_{s=1}^{N} \mathbf{1}_{M_{s}}$	Random effect design matrix
$\mathbf{w}_{s}=\left(\left(w_{s j}\right)\right)=\left(\begin{array}{llll} w_{s 1} & w_{s 2} & \cdots & w_{s M_{s}} \end{array}\right)^{\prime}$	Weight for positions in cluster s (Ed)
	Collapsing matrix (Ed)

$\mathbf{g}_{p}^{\prime}=\mathbf{g}^{\prime}\left[\ddot{\mathbf{C}}\left(\overrightarrow{\mathbf{C}}^{\prime} \overrightarrow{\mathbf{C}}\right)^{-1}\right] \quad$ Linear constants for target to apply to partially collapsed random variables (Ed)

$$
\mathbf{P}_{\ddot{\mathrm{C}}}=\mathbf{I}_{N^{2} \bar{M}}-\ddot{\mathbf{C}}\left(\ddot{\mathbf{C}}^{\prime} \ddot{\mathbf{C}}\right)^{-1} \ddot{\mathbf{C}}^{\prime} \quad \text { Ortho-complement of partial collapsing (Ed) }
$$

Permutation Random Variables

$i=1, \ldots, N \quad$ Position in permutation of clusters
$j=1, \ldots, M_{s}$
Position in permutation of units in cluster s
$v=1, \ldots, N_{j} \quad$ Position in permutation of units in stratum j
$U_{i s}$ for $i=1, \ldots, N ; s=1, \ldots, N \quad$ Indicator of selection of cluster s in position i.
$U_{j t}^{(s)}$ for $j=1, \ldots, M_{s}, t=1, \ldots, M_{s}$ and $s=1, \ldots, N \quad$ Indicator of selection of unit t in position j in cluster s
$U_{v k}^{(j)}$ for $v=1, \ldots, N_{j}, k=1, \ldots, N_{j}$ and $j=1, \ldots, J \quad$ Indicator of selection of unit k in position v in stratum j (Viviana)
$\tilde{Y}_{s j}=\sum_{t=1}^{M_{s}} U_{j t}^{(s)} y_{s t} \quad$ Expected response SSU j in cluster s
$Y_{j v}=\sum_{k=1}^{N_{j}} U_{v k}^{(j)} y_{j k} \quad$ Response of unit in position v of stratum j
$\tilde{Y}_{w s j}=w_{s j} \sum_{t=1}^{M_{s}} U_{j t}^{(s)} y_{s t} \quad$ or $\quad \tilde{Y}_{w s j}=w_{s j} \mathbf{y}_{s}^{\prime} \mathbf{U}_{j}^{(s)} \quad$ Expected weighted response for SSU j in cluster s
$Y_{i j}=\sum_{s=1}^{N} \sum_{t=1}^{M} U_{i s} U_{j t}^{(s)} y_{s t}$
$Y_{i j k}^{*}=Y_{i j}+W_{i j k}^{*}$
$B_{i}=\sum_{s=1}^{N} U_{i s} \beta_{s}$

Vectors and Matrices

$\mathbf{U}_{t}^{(s)}=\left(\left(U_{j t}^{(s)}\right)\right)=\left(\begin{array}{llll}U_{1 t}^{(s)} & U_{2 t}^{(s)} & \cdots & U_{M t}^{(s)}\end{array}\right)^{\prime}$
$\mathbf{U}_{j}^{(s)}=\left(\left(\begin{array}{llll}\left.U_{j t}^{(s)}\right)\end{array}\right)\right)=\left(\begin{array}{llll}U_{j 1}^{(s)} & U_{j 2}^{(s)} & \cdots & U_{j M}^{(s)}\end{array}\right)^{\prime}$
$\mathbf{U}^{(s)}=\left(\left(\begin{array}{llll}\left.\mathbf{U}_{j}^{\prime(s)}\right)\end{array}\right)=\left(\begin{array}{llll}\mathbf{U}_{1}^{(s)} & \mathbf{U}_{2}^{(s)} & \cdots & \left.\mathbf{U}_{M}^{(s)}\right)^{\prime} \quad \text { Permute units in cluster } s \text { (Ed) }\end{array}\right.\right.$
$\mathbf{U}^{(j)}=\left(\left(U_{\nu k}^{(j)}\right)\right)=\left(\begin{array}{llll}U_{11}^{(j)} & U_{12}^{(j)} & \cdots & U_{1 N_{j}}^{(j)} \\ U_{21}^{(j)} & U_{22}^{(j)} & & U_{2 N_{j}}^{(j)} \\ & & & \\ U_{N_{j} 1}^{(j)} & U_{N j^{2}}^{(j)} & & U_{N_{j} N_{j}}^{(j)}\end{array}\right) \quad$ Permute units in stratum j (Viviana).
$\mathbf{U}_{s}=\left(\left(U_{i s}\right)\right)=\left(\begin{array}{llll}U_{1 s} & U_{2 s} & \cdots & U_{N s}\end{array}\right)^{\prime} \quad$ Note that this is a column of \mathbf{U}, while \mathbf{U}_{i}^{\prime} is a row of \mathbf{U}
$\mathbf{U}=\left(\left(\mathbf{U}_{s}^{\prime}\right)\right)^{\prime}=\left(\begin{array}{llll}\mathbf{U}_{1} & \mathbf{U}_{2} & \cdots & \mathbf{U}_{N}\end{array}\right)$
$\mathbf{U}=\left(\begin{array}{ll}\mathbf{U}_{I} & \mathbf{U}_{I I}\end{array}\right) \quad$ Partitioned cluster permutation matrix (Ed)
$\mathbf{U}_{I}=\left(\left(\mathbf{U}_{i}\right)\right)=\left(\begin{array}{llll}\mathbf{U}_{1} & \mathbf{U}_{2} & \cdots & \mathbf{U}_{n}\end{array}\right) \quad$ Sample portion of cluster permutation matrix (Ed)
$\mathbf{U}_{I I}=\left(\left(\mathbf{U}_{i}\right)\right)=\left(\begin{array}{llll}\mathbf{U}_{n+1} & \mathbf{U}_{n+2} & \cdots & \mathbf{U}_{N}\end{array}\right) \quad$ Remainder portion of cluster permutation matrix (Ed)
$\tilde{\mathbf{Y}}_{s}=\left(\left(\begin{array}{llll}\tilde{Y}_{s j}\end{array}\right)\right)=\left(\begin{array}{llll}\tilde{Y}_{s 1} & \tilde{Y}_{s 2} & \cdots & \tilde{Y}_{s M_{s}}\end{array}\right)^{\prime}$ or $\quad \tilde{\mathbf{Y}}_{s}=\mathbf{U}^{(s)} \mathbf{y}_{s}=\left(\left(\tilde{Y}_{s j}\right)\right)$ Permuted units in cluster s (Ed)
$\mathbf{Y}_{j}=\mathbf{U}^{(j)} \mathbf{y}_{j}=\left(\left(Y_{j v}\right)\right) \quad$ Permuted units in stratum j (Viviana)
$\mathbf{Y}=\left(\left(\mathbf{Y}_{j}\right)\right)=\left(\begin{array}{llll}\mathbf{Y}_{1}^{\prime} & \mathbf{Y}_{2}^{\prime} & \cdots & \mathbf{Y}_{J}^{\prime}\end{array}\right)^{\prime} \quad$ Vector of strata with permuted units (Viviana)
$\tilde{\mathbf{Y}}_{w s}=\left(\left(\begin{array}{llll}\tilde{Y}_{w s j}\end{array}\right)\right)=\left(\begin{array}{llll}\tilde{Y}_{w s 1} & \tilde{Y}_{w s 2} & \cdots & \tilde{Y}_{w s M_{s}}\end{array}\right)^{\prime}$
$\mathbf{Y}_{i}=\left(\left(Y_{i j}\right)\right)=\left(\begin{array}{llll}Y_{i 1} & Y_{i 2} & \cdots & Y_{i M}\end{array}\right)^{\prime} \quad$ When $M_{s}=M$ for all $s=1, \ldots, N$.
$\mathbf{Y}=\left(\left(\mathbf{Y}_{i}\right)\right)=\left(\begin{array}{llll}\mathbf{Y}_{1}^{\prime} & \mathbf{Y}_{2}^{\prime} & \cdots & \mathbf{Y}_{N}{ }^{\prime}\end{array}\right)^{\prime} \quad$ When $M_{s}=M$ for all $s=1, \ldots, N$.
or $\mathbf{Y}=\left(\left(Y_{i j}\right)\right)=\left(\mathbf{U} \otimes \mathbf{I}_{M}\right)\left(\underset{s=1}{\oplus} \mathbf{U}^{(s)}\right) \mathbf{y}$
$\mathbf{E}=\left(\left(E_{i j}\right)\right)=\left(\mathbf{U} \otimes \mathbf{I}_{M}\right)\left(\underset{s=1}{\oplus} \mathbf{U}^{(s)}\right) \boldsymbol{\varepsilon} \quad$ When $M_{s}=M$ for all $s=1, \ldots, N$
$\mathbf{W}^{*}=\left(\left(W_{i j k}^{*}\right)\right)=\left(\mathbf{U} \otimes \mathbf{I}_{M}\right)\left(\underset{s=1}{\oplus} \mathbf{U}^{(s)}\right) \mathbf{W} \quad$ When $M_{s}=M$ for all $s=1, \ldots, N$ and when $k=1, \ldots, r_{s t}$
and $r_{s t}=1$ for all $s=1, \ldots, N ; t=1, \ldots, M_{s} ; .$.
$\mathbf{B}=\left(\left(B_{i}\right)\right)=\left(\begin{array}{llll}B_{1} & B_{2} & \cdots & B_{N}\end{array}\right)^{\prime} \quad$ or $\quad \mathbf{B}=\mathbf{U} \boldsymbol{\beta}$
$\mathbf{Y}^{*}=\mathbf{Y}+\mathbf{W}^{*}$
$T=\mathbf{g}^{\prime} \mathbf{Y} \quad$ Target
$T_{A}=\mathbf{g}^{\prime} \mathbf{Y}^{*} \quad$ Target with measurement error
$T=\mathbf{g}^{\prime} \ddot{\mathbf{Y}}_{w} \quad$ Target (2-stage unequal) (Ed)
$T=\mathbf{g}_{p}^{\prime} \ddot{\mathbf{Y}}_{w p} \quad$ Target (2-stage partially collapsed) (Ed)

Expanded Random Variables

Vectors
$\ddot{\mathbf{Y}}_{w i}=\left(\left(U_{i s} \tilde{\mathbf{Y}}_{w s}\right)\right)=\left(\begin{array}{llll}U_{i 1} \tilde{\mathbf{Y}}_{w 1}^{\prime} & U_{i 2} \tilde{\mathbf{Y}}_{w 2}^{\prime} & \cdots & U_{i N} \tilde{\mathbf{Y}}_{w N}^{\prime}\end{array}\right)^{\prime}$
$\overrightarrow{\mathbf{E}}_{w i}=\overrightarrow{\mathbf{Y}}_{w i}-E_{\xi_{2} \mid \xi_{1}}\left(\overrightarrow{\mathbf{Y}}_{w i}\right)$
$\ddot{\mathbf{Y}}_{w}=\left(\left(\begin{array}{llll}\ddot{\mathbf{Y}}_{w i}\end{array}\right)\right)=\left(\begin{array}{llll}\ddot{\mathbf{Y}}_{w 1}^{\prime} & \overrightarrow{\mathbf{Y}}_{w 2}^{\prime} & \cdots & \overrightarrow{\mathbf{Y}}_{w N}^{\prime}\end{array}\right)^{\prime}$ (Ed)
$\overrightarrow{\mathbf{E}}_{w}=\left(\left(\begin{array}{llll}\ddot{\mathbf{E}}_{w i}\end{array}\right)\right)=\left(\begin{array}{llll}\ddot{\mathbf{E}}_{w 1}^{\prime} & \ddot{\mathbf{E}}_{w 2}^{\prime} & \cdots & \ddot{\mathbf{E}}_{w N}^{\prime}\end{array}\right)^{\prime}$
$\ddot{\mathbf{Y}}_{w p}=\ddot{\mathbf{C}}^{\prime} \ddot{\mathbf{Y}}_{w} \quad$ Partially Collapsed Expanded random variables (Ed)

Sample and Remainder

$n_{j} \quad$ number of units in sample in stratum j (Viviana)
$n_{i j} \quad$ number of units in domain i in stratum j (Viviana)
$m_{i} \quad$ number of units in sample for the PSU in position i used in mixed models
$M_{i} \quad$ number of units in the PSU in position i used in mixed models
$f_{i}=\frac{m_{i}}{M_{i}} \quad$ sampling fraction of SSUs in the PSU in position i used in mixed models
$f=\frac{m}{M} \quad$ where $M_{s}=M$ and $m_{s}=m$ for all $s=1, \ldots, N$
$I_{s}=\sum_{i=1}^{n} U_{i s} \quad$ Indicator of inclusion of cluster s in the sample (Ed)
$\bar{Y}_{s l}=\frac{1}{m_{s}} \sum_{t=1}^{M_{s}} U_{j t}^{(s)} y_{s t} \quad$ Partially collapsed unequal clusters (Ed)
$\hat{Y}_{i}=\sum_{s=1}^{N} U_{i s} M_{s} w_{s} k_{s}^{*} \bar{Y}_{s I} \quad$ Weighted sample mean for PSU i (partially collapsed unequal) (Ed)
$\overline{\hat{Y}}=\frac{1}{n} \sum_{i=1}^{n} \hat{Y}_{i} \quad$ Average for sample in partially collapsed unequal clusters (Ed)

$$
\bar{Y}^{*}=\frac{1}{n m} \sum_{i=1}^{n} \sum_{j=1}^{m} Y_{i j k}^{*}
$$

where $M_{s}=M$ and $m_{s}=m$ for all $s=1, \ldots, N$ and $k=1, \ldots, r_{\text {st }}$
where $r_{s t}=1$ for all $s=1, \ldots, N ; t=1, \ldots, M_{s}$
$\bar{Y}=\frac{1}{n m} \sum_{i=1}^{n} \sum_{j=1}^{m} Y_{i j}$
where $M_{s}=M$ and $m_{s}=m$ for all $s=1, \ldots, N$
$\bar{Y}_{i}^{*}=\frac{1}{m} \sum_{j=1}^{m} Y_{i j k}^{*}$
where $M_{s}=M$ and $m_{s}=m$ for all $s=1, \ldots, N$ and $k=1, \ldots, r_{\text {st }}$
where $r_{s t}=1$ for all $s=1, \ldots, N ; t=1, \ldots, M_{s}$
$\bar{Y}_{i}=\frac{1}{m} \sum_{j=1}^{m} Y_{i j} \quad$ where $M_{s}=M$ and $m_{s}=m$ for all $s=1, \ldots, N$

Vectors

$\mathbf{Y}_{I}=\mathbf{K}_{I} \mathbf{Y}$
$\mathbf{Y}_{I I}=\mathbf{K}_{I I} \mathbf{Y}$
$\mathbf{Y}_{I}^{*}=\mathbf{K}_{I} \mathbf{Y}^{*}$
$\mathbf{Y}_{I I}^{*}=\mathbf{K}_{I I} \mathbf{Y}^{*}$
$\overline{\mathbf{Y}}_{I}^{*}=\left(\left(\begin{array}{llll}\bar{Y}_{i}^{*}\end{array}\right)\right)=\left(\begin{array}{llll}\bar{Y}_{1}^{*} & \bar{Y}_{2}^{*} & \cdots & \bar{Y}_{n}^{*}\end{array}\right)^{\prime}$
$\overline{\mathbf{Y}}_{I}=\left(\left(\bar{Y}_{i}\right)\right)=\left(\begin{array}{llll}\bar{Y}_{1} & \bar{Y}_{2} & \cdots & \bar{Y}_{n}\end{array}\right)^{\prime}$

Expanded Random Variables

Vectors

$\overrightarrow{\mathbf{Y}}_{w I}=\left(\begin{array}{ll}\mathbf{I}_{n N} & \underset{n N \times\left(2 N^{2}-n N\right)}{\mathbf{0}}\end{array}\right) \overrightarrow{\mathbf{Y}}_{\text {wp }} \quad$ Sample random variables (Ed)
$\overrightarrow{\mathbf{Y}}_{\text {wII }}=\left(\underset{\left(2 N^{2}-n N\right) \times n N}{\mathbf{0}} \mathbf{I}_{2 N^{2}-n N}\right) \overrightarrow{\mathbf{Y}}_{\text {wp }} \quad$ Remaining random variables (Ed)
$\overrightarrow{\mathbf{E}}_{w I}=\left(\begin{array}{ll}\mathbf{I}_{n N} & \underset{n N \times\left(2 N^{2}-n N\right)}{\mathbf{0}}\end{array}\right) \overrightarrow{\mathbf{E}}_{w} \quad$ Partitioned sample residuals (Ed)
$\ddot{\mathbf{E}}_{w I I}=\left(\begin{array}{ll}\left(2 \mathbf{N D}^{2}-n N\right) \times n N & \mathbf{I}_{2 N^{2}-n N}\end{array}\right) \ddot{\mathbf{E}}_{w} \quad$ Partitioned remainder residuals (Ed)
$\operatorname{var}_{5,5 t_{2}}\binom{\overrightarrow{\mathbf{Y}}_{\mathbf{Y}_{w I I}}}{\overrightarrow{\mathbf{w}}_{\text {wII }}}=\left(\begin{array}{cc}\mathbf{V}_{I} & \mathbf{V}_{I, I I} \\ \mathbf{V}_{I, I I}^{\prime} & \mathbf{V}_{I I}\end{array}\right) \quad$ Partially collapsed unequal cluster size (Ed)
$\mathbf{V}_{I}=\frac{1}{N-1}\left(\mathbf{I}_{n}-\frac{1}{N} \mathbf{J}_{n}\right) \otimes\left[\left({\underset{s}{s=1}}_{N}^{\infty} f_{s} d_{s}\right) \mathbf{P}_{N}\left(\underset{s=1}{\oplus} f_{s} d_{s}\right)\right]+\mathbf{I}_{n} \otimes\left(\underset{s=1}{N} f_{s}^{2} v_{s e}^{*_{s e}}\right)(\mathrm{Ed})$

(Ed)

Expected Values

$E_{\xi \xi_{15}^{5} \xi_{3} \xi_{3}}\left(\mathbf{Y}^{*}\right)=\mathbf{X} \mu$
$\mathbf{X}_{s} \quad$ Sample portion of design matrix for stratified domains (Viviana)
$\mathbf{X}_{R} \quad$ Remainder portion of design matrix for stratified domains (Viviana)
$\operatorname{var}_{\xi_{5, \xi_{2}}}\binom{\mathbf{Y}_{I}}{\overline{\mathbf{Y}}_{I I}}=\left(\begin{array}{cc}\mathbf{V}_{I} & \mathbf{V}_{I, I I} \\ \mathbf{V}_{I I, I} & \mathbf{V}_{I I}\end{array}\right)$
$\operatorname{var}_{5,5 \xi_{2} \xi_{3}}\left(\begin{array}{c}\mathbf{Y}_{I I}^{*} \\ \overline{\mathbf{Y}_{I}} \\ \overline{\mathbf{Y}}_{I I}\end{array}\right)=\left(\begin{array}{ccc}\mathbf{V}_{I}^{*} & \mathbf{V}_{I} & \mathbf{V}_{I, I I} \\ \mathbf{V}_{I} & \mathbf{V}_{I} & \mathbf{V}_{I I I} \\ \mathbf{V}_{I I, I} & \mathbf{V}_{I I, I} & \mathbf{V}_{I I}\end{array}\right)$
$\mathbf{V}_{I}^{*}=\mathbf{V}_{I}+\sigma_{r}^{2} \mathbf{I}_{n m}$

Estimators/Predictors

$\bar{Y}_{i}=\frac{1}{m_{i}} \sum_{j=1}^{m_{i}} Y_{i j}$
indicates the average of SSUs for the PSU realized in position i in a sample. This notation is used with mixed models.
$\hat{\mu}=\sum_{i=1}^{n} w_{i} \bar{Y}_{i} \quad$ weighted mean used in mixed models.
$\hat{T}=\mathbf{L}^{\prime} \overrightarrow{\mathbf{Y}}_{w I} \quad$ Predictor for partially collapsed unequal cluster (Ed)

$$
\begin{aligned}
\hat{\mathbf{L}} & =\mathbf{g}_{I}+\left[\mathbf{V}_{I}^{-1}-\mathbf{V}_{I}^{-1} \mathbf{X}_{I}\left(\mathbf{X}_{I}^{\prime} \mathbf{V}_{I}^{-1} \mathbf{X}_{I}\right)^{-1} \mathbf{X}_{I}^{\prime} \mathbf{V}_{I}^{-1}\right] \mathbf{V}_{I, I I} \mathbf{g}_{I I}+\mathbf{V}_{I}^{-1} \mathbf{X}_{I}\left(\mathbf{X}_{I}^{\prime} \mathbf{V}_{I}^{-1} \mathbf{X}_{I}\right)^{-1} \mathbf{X}_{I I}^{\prime} \mathbf{g}_{I I} \\
& =\left(\mathbf{P}_{n} \mathbf{c}_{I} \otimes\left[\oplus_{s=1}^{N} \frac{k_{s}^{*}}{f_{s}}\right] \mathbf{1}_{N}\right)+\frac{N}{n} \bar{c}\left[\mathbf { 1 } _ { n } \otimes \left({\left.\left.\underset{s=1}{N} \frac{1}{f_{s}}\right) \mathbf{1}_{N}\right] \quad \text { BLUP (Ed) }}_{\hat{T}}=\sum_{i=1}^{n} c_{i} \hat{Y}_{i}-n \overline{C_{I}} \overline{\hat{Y}}+\frac{N}{n} \bar{c}\left[\sum_{s=1}^{N} I_{s}\left(M_{s} w_{s} \bar{Y}_{s I}\right)\right] \quad\right.\right. \text { Partially collapsed unequal cluster predictor (Ed) } \\
\hat{\boldsymbol{\alpha}}^{*} & =\left(\mathbf{X}_{I}^{\prime} \mathbf{V}_{I}^{*-1} \mathbf{X}_{I}\right)^{-1} \mathbf{X}_{I}^{\prime} \mathbf{V}_{I}^{*-1} \mathbf{Y}_{I}^{*} \\
\hat{\sigma}_{e}^{2} & =\max \left(0, M S E-\sigma_{r}^{2}\right) \\
\hat{\sigma}^{2} & =\max \left(0, \frac{1}{m}\left[M S B-M S E+f \hat{\sigma}_{e}^{2}\right]\right) \\
\hat{\sigma}^{* 2} & =\max \left(0, \frac{1}{m}[M S B-M S E]\right)
\end{aligned}
$$

