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Performance of Balanced Two-Stage Empirical Predictors of Realized Cluster Latent 

Values from Finite Populations: A Simulation Study 

 

 

Silvina San Martino1, Julio da Motta Singer2, Edward J. Stanek III3 

 

 

Abstract 

 

Predictors of random effects are usually based on the popular mixed effects model 

developed under the assumption that the sample is obtained from a conceptual infinite 

population even when the actual population is finite. Two alternatives that incorporate the 

finite nature of the population are the super-population model proposed by Scott and Smith 

(1969, JASA, 64: 830-840) and the random permutation model recently proposed by 

Stanek and Singer (2004, JASA, 99:1119-1130). The random permutation model based 

predictor derived under the additional assumptions that all variance components are known 

and that within cluster variances are equal has smaller mean squared error than the 
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corresponding predictors based on either the mixed effects or Scott and Smith’s models. As 

population variances are rarely known, we propose method of moment estimators to obtain 

empirical predictors and conduct a simulation study to evaluate their performance. The 

simulation results suggest that the performance of the random permutation model empirical 

predictor improves either as the cluster sampling fractions increase or as the number and 

size of clusters increase. When both cluster and unit intra-class correlation coefficients are 

very high (e.g., 0.95 or more), the performance of the empirical predictors derived under 

the three models is similar. Additionally, the results indicate that the random permutation 

model empirical predictor is more stable than its competitors since, in terms of mean 

squared error, it is either the best or the second best and even in this case, its performance 

lies within acceptable limits. 

 

 

Keywords: Empirical predictors, Finite population; Optimal prediction;; Random 

permutation; Two-stage sampling  
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1. Introduction 

 

There are many instances where clustered finite populations occur naturally as in 

educational, public health or sociological surveys, where classrooms in schools, physician 

practices in hospitals or families in communities are typical examples of such clusters. In 

such settings, usually, there is interest in the evaluation of the contribution of within and 

between cluster variability to overall variability with information extracted from a multi-

stage random sample selected without replacement. In particular, when interest lies in the 

prediction of the latent values of realized clusters (i.e., the average expected response of the 

units in those clusters) based on data from a two-stage sample from a finite population, 

three approaches may be considered. 

The most popular approach is based on the usual mixed model derived under the 

assumption that the sample is obtained from a conceptual infinite population. Best linear 

unbiased predictors (BLUP) derived under such models have been widely considered in the 

literature (Goldberger (1962), Henderson (1984), McLean, Sanders, and Stroup (1991), 

Robinson (1991), Stanek, Well, and Ockene (1999), McCulloch and Searle (2001)), but 

they do not account for the finite nature of the population under investigation. The second 

approach, suggested by Scott and Smith (1969) and extended by Bolfarine and Zacks 

(1992) to include response error, considers the finite nature of the population and bases the 

inference on a super-population model. This approach has had limited application, in part 

because its performance may be severely affected by model miss-specification and because 

it relies on the artificial nature of the postulated super-population. The third, recently 

suggested by Stanek, Singer and Lencina (2003) in a simple random sampling setup and 
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extended by Stanek and Singer (2004) to a balanced two-stage sampling setup with or 

without response error, considers a design-based probability model, (called “random 

permutation model” (RP)), induced by the sampling process. This approach does not 

require restrictive assumptions (such as normality) so that it can be applied to a wide range 

of practical settings. 

Under each approach, the predictors of realized cluster latent values are formed as 

the sum of predictors of observed and unobserved units, differing with respect to the 

associated shrinkage factors. These shrinkage factors are functions of population variance 

components and, for the last two models, they depend on finite population characteristics 

such as cluster sizes and on the sampling fraction of units. Depending on all these 

characteristics, the predictors obtained under these three models can occasionally be quite 

similar, but sometimes they can differ greatly.  

As an example, suppose that an educational survey is conducted in a given high-

school to evaluate the ability of second graders with respect to a certain subject by means of 

a test with scores ranging from 0 to 10. We assume that the student responses include 

measurement error. To account for teacher effects, a two-stage random sample is obtained 

from the population of second grade students assigned to classrooms (each with 30 

students). Assume that a sample of 15 students is selected from a sample of classrooms in 

the school. In addition to estimating the school response and variance components, suppose 

that there is interest in predicting response for a sampled classroom. For illustration, let us 

assume that the between classroom variability is 1.25, the within cluster variability is 2.00 

and that the response error variability is 0.80 (i.e., the cluster intra-class correlation is 0.38 
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and the unit intra-class correlation is 0.71). Suppose that the school sample average is 6.75, 

while for the classroom with teacher i , the sample average is 5.20. Based on the sample 

data, there are four approaches to predicting the latent classroom mean. First, we may use 

the sample classroom average, 5.20. Alternatively, assuming that the response error model 

holds for all students, the average performance for the classroom with teacher i is predicted 

to be 5.40, 5.30 and 5.90 respectively using the mixed effects model, Scott and Smith’s 

model or Stanek and Singer´s RP model predictors (see section 2.4 for details about how 

each predictor is obtained). The 11% relative difference observed between the predicted 

values obtained under the random permutation model and Scott and Smith’s model may be 

meaningful in this type of study. Consequently, an evaluation of the performance of the 

predictors derived under these three models for a wide range of conditions may be very 

helpful for practical applications. The objective of this comparison is to select the predictor 

that provides the best result, using the mean squared error (MSE) as the criterion for 

selecting the best predictor.  

The mixed effects, Scott and Smith’s and random permutation models rely on 

different assumptions. Only the RP model links the finite population to a set of random 

variables without requiring additional assumptions than those related to simple random 

sampling. When all variances are known and within cluster variances are equal, Stanek and 

Singer (2004) show that the predictors of realized cluster latent values based on such a 
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model have smaller MSE (evaluated under the RP model assumptions) than those based on 

the mixed effects and Scott and Smith’s models. Here we consider simulation studies to 

compare the predictors in terms of the empirical MSE.. 

In practical situations, variances are rarely known and need to be estimated. In this 

context, we propose estimators for such variances and report simulation study results that 

compare the performance of empirical predictors of realized cluster latent values, providing 

guidance for the choice among the three alternatives. 

In Section 2 we present a brief review of the models and specify the corresponding 

predictors of sampled cluster latent values. We also propose empirical predictors based on 

variance components estimated from the sample. In Section 3 we describe technical details 

of the simulation study to compare the performance of these predictors for finite 

populations with different structures. Finally, in Sections 4 and 5 we present the simulation 

results and discussion, respectively. Programs and additional results are available at 

http://www.umass.edu/cluster/ed/Results-pub.html. 

 

2. Predictors of the cluster latent value under different models 

 

We consider a finite population with M units, indexed by 1, ,t M= K  in each of  N 

clusters, indexed by 1, ,s N= K . A fixed constant sty , called a “unit parameter”, is 

associated with unit t  in cluster s . We summarize these parameters in the vector 

( )1 2 N

′′ ′ ′=y y y yL  where ( )1 2s s s sMy y y ′=y L , 1,...,s N= . 
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We define the latent value in cluster s  as 
1

1 M

s st
t

y
M

μ
=

= ∑  and the corresponding 

variance as ( )22

1

1 1 M

s st s
t

M y
M M

σ μ
=

−⎛ ⎞ = −⎜ ⎟
⎝ ⎠

∑  for 1,...,s N= . Also, we let 2 2

1

1 N

e s
sN

σ σ
=

= ∑  

denote the average within cluster variance. Similarly, we define the population mean and 

the between cluster variance as 
1

1 N

s
sN

μ μ
=

= ∑  and ( )22

1

1 1 N

s
s

N
N N

σ μ μ
=

−⎛ ⎞ = −⎜ ⎟
⎝ ⎠

∑ , 

respectively. 

We assume that a two-stage simple random sample is to be selected (without 

replacement) from this population. At the first stage, a sample of n  clusters is selected and 

at a second stage, a sample of m  distinct units is selected from the M units in each selected 

cluster. 

 

 2.1. The random permutation (RP) model 

 

We briefly summarize the RP model presented by Stanek and Singer (2004). This 

model is induced by the two-stage random sampling of a finite clustered population. The 

two-stage random permutation model is represented as an ordered list of NM  random 

variables, the values of which are the responses of an independent permutation of clusters 

and units in clusters. For each permutation, we assign a new label, 1,...,i N=  to the clusters 

according to its position in the permuted list.  Similarly, we label the positions in the 

permutation of units in a cluster by 1,...,j M= .  For ease of exposition, we refer to the 

cluster that will occupy position i  in the permutation of clusters as primary sampling unit  
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(PSU) i , and to the unit that will occupy position j  in the permutation of units within a 

cluster as secondary sampling unit (SSU) j .  Since any unit in any cluster may occupy 

position ij , we represent the response for SSU j in PSU i  as the random variable ijY .  

To relate sty  to ijY  we use two indicator random variables: isU , which takes on a 

value of one when the realized cluster corresponding to PSU i  is cluster s  and a value of 

zero otherwise, and ( )s
jtU , which takes on a value of one when the realized unit 

corresponding to SSU j in cluster s  is unit t  and zero otherwise. As a consequence, the 

random variable corresponding to SSU j in PSU i in a permutation is given by  

( )

1 1

N M
s

ij is jt st
s t

Y U U y
= =

= ∑∑ . 

The finite population y  can be viewed as the realization of the random variable 

( ) ( )
1

N
s

M s=

⎛ ⎞= ⊗ ⊕⎜ ⎟
⎝ ⎠

Y U I U y  

where ( )1 2
NM

N

′′ ′ ′= ∈Y Y Y YL � , with ( )1 2
M

i i i iMY Y Y ′= ∈Y L � ,  

( ) ( )( ) ( ) ( )
1 2

s s s s M M
M= ∈ ×U U U UL � � , with ( ) ( ) ( )( )( )

1 2
s s ss

t t t MtU U U ′=U L , and 

( )1 2
N N

N= ∈ ×U U U UL � � , with columns ( )1 2s s s NsU U U ′=U L . 

Here, ⊗  denotes the Kronecker product and 
1

N

ss=
⊕A  denotes a block diagonal matrix with 

blocks sA  (Searle, Casella and McCulloch, 1992). The difference between Y and y  is the 

interpretation of the subscripts that define the elements of the vectors. The subscripts in Y  
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correspond to positions in a permutation, while the subscripts in y  correspond to labels of 

units. 

Defining ( )s sβ μ μ= −  as the deviation of the latent value of cluster s from the 

population mean and ( )st st syε μ= −  as the deviation of the parameter for unit t  (in 

cluster s ) from the latent value of cluster s, we can re-parameterize the vector of fixed 

values y  via the non-stochastic model   

 μ= + +y X Zβ ε  (2.1) 

where N M= ⊗X 1 1 , N M= ⊗Z I 1 , ( )1 2 Nβ β β′ =β L , and ε  is defined similarly to y . 

Here, a1  denotes an 1a×  column vector with all elements equal to 1. 

Using elementary properties of the indicator random variables and the simple 

structure of X  and Z , it follows that N N=U1 1 , ( )s
M M=U 1 1 , ( ) ( )

1

N
s

M s=

⎛ ⎞⊗ ⊕ =⎜ ⎟
⎝ ⎠

U I U X X  

and ( ) ( )
1

N
s

M Ms=

⎛ ⎞⊗ ⊕ = ⊗ =⎜ ⎟
⎝ ⎠

U I U Z U 1 ZU . Then, pre-multiplying both sides of (2.1) by 

( ) ( )
1

N
s

M s=

⎛ ⎞⊗ ⊕⎜ ⎟
⎝ ⎠

U I U  and using the above results, we obtain the random permutation mixed 

effects model 

 μ= +Y X ZB E+  (2.2) 

where ( ) ( )
1

N
s

M s=

⎛ ⎞= ⊗ ⊕⎜ ⎟
⎝ ⎠

E U I U ε  and ( )1 2 NB B B ′=B U Lβ = . Note that because of the 

random variables U , the terms 
1

N

i is s
s

B U β
=

=∑  for 1,...,i N=  are random effects and 

represent the deviation of the latent value for PSU i  from the population mean. 
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For the random variable Y in (2.2) we have 

( )
1 2

Eξ ξ μ=Y X , 

and 

( ) ( )
1 2

2 *var e NM N M NMNξ ξ
σσ σ

2
2= + ⊗ −Y I I J J  

where 
2

2 e

M
σσ σ∗2 = −  , a a a′=J 1 1 , and the subscripts 1ξ  and 2ξ  denote expectation with 

respect to permutations of the clusters and to permutations of units in a cluster, 

respectively. 

As the values of the finite population defined by y  may not be observed directly, 

we assume a response error model of the form 

= +Y y W%  

where ( ) NM
stW ∈W = �  is a vector of independent response errors with ( ) 0stE W =  and 

( ) 2var st stW σ= , 1,...,s N= , 1,...,t M= . 

Using this notation, the two-stage random permutation model with response error is 

represented by  

( ) ( )* *

1

N
s

M s=

⎛ ⎞= ⊗ ⊕ = +⎜ ⎟
⎝ ⎠

Y U I U Y Y W%  

where ( ) ( )*

1

N
s

M s=

⎛ ⎞= ⊗ ⊕⎜ ⎟
⎝ ⎠

W U I U W . Under the re-parameterization (2.1), we express this as 

a mixed effects model of the form  

 ( )* *μ= + +Y X ZB E W+ . (2.3) 
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The first two central moments of *Y  are  

( )
1 2 3

*Eξ ξ ξ μ=Y X  

and 

( ) ( ) ( )
1 2 3

* 2 2 *var e r NM N M NMNξ ξ ξ
σσ σ σ

2
2= + + ⊗ −Y I I J J . 

The subscript 3ξ  denotes expectation with respect to response error and 
2

2

1 1

N M
st

r
s t NM

σσ
= =

=∑∑  

denotes the average response error variance. 

The same finite population with two-stage permuted elements is represented in each 

realization of *Y . Once the sample (i.e., permutation) has been selected, it will be apparent 

which cluster corresponds to a particular PSU.  We refer to that cluster as the realized 

PSU. 

Denoting the sample elements by * *
I I I= +Y Y W , the model for the sample is 

( )* *
I I I I Iμ= + +Y X Z B E W+  where I n m⊗X = 1 1 , I n m⊗Z = I 1 , ( )*

I IE μ=Y X  and 

( ) ( )( ) ( ) ( )
2

* 2 2 *2var I e r n m n m n mN
σσ σ σ= + ⊗ + ⊗ − ⊗Y I I I J J J . 

 

 2.2. Scott and Smith´s (SS) super-population model 

 

Scott and Smith (1969) used a super-population model according to which the finite 

population y  is viewed as a realization of a vector of random variables Y  such that 

   ( )E μ=Y X    and  ( ) ( )2 2

1
var

N

i M Mi
σ σ

=
= ⊕ +Y I J .  (2.4) 

Deleted: SanMartino&al2005v20.doc

Deleted: SanMartino&al2005v17.doc

Deleted: 09/01/07

Inserted: SanMartino&al2005v20.doc

Deleted: 18/01/07

Inserted: 18/01/07

Deleted: 14/02/07

Inserted: 14/02/07



SanMartino&al2005v20.doc - 01/02/07 

 

12

Although we use the same notation, neither μ  nor 2σ  and 2
iσ  necessarily refer to the finite 

population mean or variance components specified at the beginning of section 2, because 

the vector Y  in (2.4) is not directly linked to the population units as in the random 

permutation model. In this context, the cluster means, i.e., 1, , Nμ μK  may be considered as 

realizations of independent identically distributed random variables 1, , NΛ ΛK  in a super-

population such that for each 1, ,i N= K , ( )iE μΛ =  and 2var( )i σΛ = . Then, 2σ  may be 

interpreted as the variance of the distributions of the random variables 1, , NΛ ΛK  from 

which the cluster means 1, , Nμ μK  constitute a sample. According to this model, elements 

within the same cluster are correlated, but elements in different clusters are not. 

Using Bayesian models, Bolfarine and Zacks (1992) extend the approach 

considered by Scott and Smith (1969) to a two-stage sampling process with response error. 

Essentially, they add a normality assumption to the super-population model considered by 

Scott and Smith (1969) and suppose that the potentially observed variables are given by 

elements of 

* = +Y Y W , 

where 2

1
~ ,

N

ri Mi
N σ

=

⎛ ⎞⊕⎜ ⎟
⎝ ⎠

W 0 I , 1,...,i N= , 1,...,j M= , and W  is independent of Y . 

Assuming 2 2
ri rσ σ= , 1,...,i N= , we obtain  

  ( )*E μ=Y X  and ( ) ( )* 2 2 2

1
var

N

i r M Mi
σ σ σ

=
⎡ ⎤= ⊕ + +⎣ ⎦Y I J . (2.5) 

Denoting the sample elements by *
I I I= +Y Y W , it follows that ( )*

I IE μ=Y X  and 

( ) ( )( )* 2 2 2

1
var

n

I i r m mi
σ σ σ

=
= ⊕ + +Y I J . 
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 2.3. The mixed effects (ME) model 

 

 Under a mixed effects model, the two-stage sample data are considered to have been 

selected from a conceptual infinite population, understood to be the limit (as the size 

increases) of the finite population of interest. In this case, the sample elements in PSU i , 

given by 1 2( )Ii i i imY Y Y ′=Y K , 1, ,i n= K , may be modeled by 

 Ii Ii Ii i IiBμY  = X + Z + E , (2.6) 

where Ii Ii mX = Z = 1  and ( )1 2Ii i i imE E E ′=E K . Here, ijY  is the response of SSU j, 

1, ,j m= K  in PSU i, μ  corresponds to the expected response over SSUs and PSUs in the 

conceptual infinite population, iB  is a random effect that corresponds to the deviation of 

the average expected response of SSUs in PSU i from μ , and ijE  is a random deviation of 

the (conditional) expected response of SSU j from the (conditional) average expected 

response of elements in PSU i. Typically, it is assumed that ( )20 ,iB N σ�  and 

( )2,Ii i mN σE 0 I�  are independent, so that ( )2 2,Ii Ii i m mN μ σ σ+Y X I J� . If in (2.6) we 

include a second additive (response) error term ( )2,Ii r mN σW 0 I�  independent of iB  and 

IiE  then ( )( )* 2 2 2,Ii Ii Ii Ii i r m mN μ σ σ σ= + + +Y Y W X I J� . It follows that 

 ( )* * * *
I I1 I2 In I I I I Iμ

′′ ′ ′ =Y  = Y Y Y  X + Z B + E + WL  (2.7) 
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where ( )1 2I nB B B ′=B L , ( )1 2I I I In
′′ ′ ′=E E E EL , and 

( )1 2I I I In
′′ ′ ′=W W W WL which implies that ( )* 2 2 2

1
,

n

I I i r m mi
N μ σ σ σ

=

⎛ ⎞⎡ ⎤⊕ + +⎜ ⎟⎣ ⎦⎝ ⎠
Y X I J� . 

Here again, neither μ  nor 2σ  and 2
iσ  refer to the finite population mean or 

variance components. Instead, the variance of the random effects, 2σ , can be interpreted as 

the variance of the random cluster mean ( )iBμ +  which conceptually takes on an infinite 

number of values. 

 

 2.4. Predictors of the latent value of a realized PSU 

 

Our principal interest lies in the linear combination that defines the latent value of 

PSU i  (for i n≤ ), i.e., iT ′= g Y , where 1
i MM
′ ′′ = ⊗g e 1 , and ie  denotes an 1N ×  column 

vector with 1 in position i  and zero elsewhere. In the mixed model, iT  corresponds to 

iBμ + . From the sampled values ( )* * * *
1 2I I I In

′′ ′ ′=Y Y Y YK , where 

( )* * * *
1 2Ii i i imY Y Y ′=Y K , the predictors of iT  (for i n≤ ) under the three models (i.e. (2.3), 

(2.5) or (2.7)) may be obtained as follows: 

i) For the mixed effects model:   ( )( ) *ˆ ˆ ˆME
i i iT k Yμ μ= + − , 

where * *

1

1 m

i ij
j

Y Y
m =

= ∑ , 

*

1

1

/
ˆ

1/

n

i i
i

n

i
i

Y ν
μ

ν

=

=

=
∑

∑
,  2 2 2

i i rmν σ σ σ= + +  , and the shrinkage constant is 
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( )
2 2

ME
i

i r

mk
m

σ
σ σ σ

2

2=
+ +

. 

ii) For the Scott and Smith model:  ( )( ) *ˆ ˆ ˆSS
i i iT k Yμ μ= + − , 

where the shrinkage constant is 

( ) ( )2 2 2
( ) ( ) ( )

2 2 21 i rSS ME ME
i i i

i r

m f
k k f k

m
σ σ σ

σ σ σ

+ +
= + − =

+ +
, 

with mf
M

=  denoting the sampling fraction for units. 

iii) For the random permutation model:  ( )* ( ) * *ˆ RP
i iT Y k Y Y= + − , 

where * *

1

1 n

i
i

Y Y
n =

= ∑  and the shrinkage constant is 

( )
2 2

( )
*2 2 2 2 2 21

RP

e r e r

m mk
m m f

σ σ
σ σ σ σ σ σ

= =
+ + + − +

. 

Under the assumption that the within-cluster variances are identical for all clusters 

(and equal to 2
eσ ), the predictors of iT  (for i n≤ ) under the three models reduce to  

( )* (model) * *
î iT Y k Y Y= + − , 

where 

i) For the mixed effects model:  ( )
2 2

ME

e r

mk
m

σ
σ σ σ

2

2=
+ +

. 

ii) For the Scott and Smith model: 

( ) ( )2 2 2
( ) ( ) ( )

2 2 21 e rSS ME ME

e r

m f
k k f k

m
σ σ σ

σ σ σ

+ +
= + − =

+ +
. 

iii) For the random permutation model:  
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( )
2 2

( )
*2 2 2 2 2 21

RP

e r e r

m mk
m m f

σ σ
σ σ σ σ σ σ

= =
+ + + − +

. 

In this case, the shrinkage constants are such that ( ) ( ) ( )0 1ME RP SSk k k≤ ≤ ≤ ≤ . 

The study of the behavior of these theoretical shrinkage constants is a first step to 

understand the similarities and differences between the predictors, although they do not 

take into account the cluster sampling fraction, as the MSE does. In Figure 1, we compare 

the behavior of the theoretical shrinkage constants as f, and the cluster ( sρ ) and unit ( tρ ) 

intra-class correlation coefficients5 vary. We also evaluate the performance of the cluster 

mean (CM) for which the shrinkage constant ( )CMk  is always equal to 1. The green solid 

line identifies the theoretical shrinkage constant for the RP model predictor. Since the 

random permutation model predictors have smallest MSE when variance components are 

known, we consider it as reference to compare the predictors and identify similar as well as 

different (poor) performance relative to it. 

 

Insert Figure 1 here 

 

We expect minor differences between the predictors, almost independently of  f, 

when both sρ  and tρ  tend to one. From Figure 1, we also observe that when f  tends to 0, 

                                                 
 
5 We define the cluster intra-class correlation coefficient as 

2

2 2s
e

σρ
σ σ

=
+

 and the unit intra-class 

correlation coefficient as 
2

2 2
e

t
e r

σρ
σ σ

=
+

. 
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( )MEk , ( )SSk  and ( )RPk  become more similar (and all of them differ from ( )CMk ). When there 

is no response error ( 1tρ = ) and all units in a cluster are sampled (f = 1), 

( ) ( ) ( ) 1RP SS CMk k k= = =  (and all differ from ( )MEk ), so that the best predictor is the cluster 

mean. When tρ  tends to zero, ( )MEk  approaches ( )RPk  (almost independently of  f ), so that 

for this situation, we expect the predictors derived under these two models to behave 

similarly. 

Relative to the theoretical results for the RP model predictor, when both sρ  and tρ  

tend to zero, we expect the CM to have poor performance when f approaches zero, while 

the SS model predictor is expected to have poor performance as f approaches one. Also, we 

expect the ME model predictor to have poor performance as sρ  tends to zero and both tρ  

and  f  tend to one.  

 

 2.5. Empirical predictors of the latent value of a realized PSU 

 

In practice, variance components are usually unknown and estimates are needed for 

the shrinkage constants.  Empirical predictors can be obtained substituting the shrinkage 

constants by their respective estimators.  Searle and Fawcett (1970) developed a rule for 

converting expectations of mean squares obtained under variance component infinite 

population models into expectations under finite population models to estimate variance 

components, but these rules have been seldom used, due, in part, to a lack of additional 

theoretical results and software. As the finite population models used in this work do not 

involve any assumption about the response distribution, besides the existence and the 
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structure of the first two moments, we use method of moments estimators of variance 

components. These estimators may be derived from ANOVA mean squares, namely 

( ) ( )21 * *

1 1
1

n m

i
i j

MSB n Y Y−

= =

= − −∑∑  and ( )21 * *

1 1
[ ( 1)]

n m

ij i
i j

MSR n m Y Y−

= =

= − −∑∑ . The mean 

squares may be expressed as quadratic forms of the type * *
I I
′Y AY  where 

1( 1) m
nn

m
− ⎛ ⎞= − ⊗⎜ ⎟
⎝ ⎠

JA P  for MSB or ( ) ( )1[ 1 ] n mn m −= − ⊗A I P

 

 for MSR, with 

1
a a aa−= −P I J  and a denoting a positive integer. Since nmA1 = 0  and ( )*

I nmE μ=Y 1 , 

under any of the three models, it follows that ( ) ( )* * 0I IE E′ =Y A Y . Therefore, 

( ) ( ) ( ) ( ) ( )* * * * * *var varI I I I I IE tr E E tr′ ′⎡ ⎤ ⎡ ⎤= + =⎣ ⎦ ⎣ ⎦Y AY Y A Y A Y Y A . 

Using these results, we obtain method of moments estimators for the variance components 

under each of the three competing models, derive estimators for the shrinkage constants and 

obtain the corresponding empirical predictors as described next.  

 

2.5.1. RP model 

 

Under the random permutation model, we have 

( ) ( ) ( )
2

* 2 *2var I e r nm n m nmN
σσ σ σ2= + + ⊗ −Y I I J J . 

To evaluate the expected value of MSR, we let ( ) ( )1[ 1 ] n mn m −= − ⊗A I P , so that 
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( ) ( )
( ) ( )

2
*var ,

1
e r

I n mn m
σ σ2 +

= ⊗
−

Y A I P  

which implies that 

( ) 2
e rE MSR σ σ2= + . 

To evaluate the expected value of MSB, we let 1( 1) m
nn

m
− ⎛ ⎞= − ⊗⎜ ⎟
⎝ ⎠

JA P , so that  

( )
2 *2

*var
1 1

e r m
I n n mn m n

σ σ σ2 + ⎛ ⎞= ⊗ + ⊗⎜ ⎟− −⎝ ⎠

JY A P P J  

which implies that 

( ) ( )*2 2 2 21e r e rE MSB m m fσ σ σ σ σ σ2 2= + + = + − + . 

Assuming that the response error variance 2
rσ  is known and equating the observed and 

expected mean squares, we obtain 2ˆe r MSRσ σ2 + =  and ( )2 2ˆ 1 rm MSB f MSR fσ σ= − − − . 

Consequently, one method of moments estimator for ( )RPk  is 

( )( ) 2
1

0 0
ˆ 1

max 0, 0
RP

r

if MSB

k MSB f MSR f
if MSB

MSB
σ

=⎧
⎪

⎛ ⎞= − − −⎨ >⎜ ⎟⎪
⎝ ⎠⎩

. 

Re-expressing ( )RPk  as 

( )*2 2 2*2 22
( )

*2 2 2 *2 2 2 *2 2 2
t e rRP e

e r e r e r

m fm fmk
m m m

σ ρ σ σσ σσ
σ σ σ σ σ σ σ σ σ

+ ++
= = =

+ + + + + +
, 

an alternative method of moments estimator for ( )RPk  may be obtained assuming that tρ  is 

known. Equating the observed and expected mean squares, we obtain 
*2 2ˆ ˆ ˆe rm MSBσ σ σ2+ + = , 2ˆ ˆe r MSRσ σ2 + =  and *2ˆm MSB MSRσ = − . Then, an alternative 

method of moments estimator for ( )RPk  is given by 
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( )( )
2

0 0
ˆ 1

max 0, 0
RP

t

if MSB
k MSB f MSR

if MSB
MSB

ρ

=⎧
⎪= − −⎛ ⎞⎨ >⎜ ⎟⎪

⎝ ⎠⎩

. 

 

 2.5.2. ME and SS Models 

 

Under the ME and SS models, we have 

( ) ( )* 2 2

1
var

n

I i m mi
a b

=
= ⊕ +Y I J , 

where 2 2 2
i i ra σ σ= + , and 2 2b σ= . Using ( ) ( )1[ 1 ] n mn m −= − ⊗A I P , it follows that 

( ) ( )
* 2

1

1var
1

n

I i mi
a

n m =
= ⊕

−
Y A P , 

and hence  

2

1

1( )
n

i
i

E MSR a
n =

= ∑ . 

Letting 1( 1) m
nn

m
− ⎛ ⎞= − ⊗⎜ ⎟
⎝ ⎠

JA P , it follows that  

( ) ( ) ( )1* 2 2

1
var 1

n

I i n mi
m n a mb

−

=

⎛ ⎞⎡ ⎤= − ⊕ + ⊗⎡ ⎤ ⎜ ⎟⎣ ⎦ ⎢ ⎥⎣ ⎦⎝ ⎠
Y A P J ,  

and hence 

 2 2

1

1( )
n

i
i

E MSB a mb
n =

= +∑   

When within cluster variances are equal (i.e., 2 2
i eσ σ=  for all 1,...,i n= ), we have 

2 2 2
i e ra σ σ= +  for all 1,...,i n= , and the expected mean squares terms reduce to 
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( ) 2 2
e rE MSR σ σ= +  

and 

( ) 2 2 2
e rE MSB mσ σ σ= + + . 

In this context, equating observed and expected mean squares, we obtain  

 ( )
2 2

0 0
ˆˆ

ˆ ˆ ˆ max 0, 0
ME

e r

if MSB
mk MSB MSR if MSBm

MSB

σ
σ σ σ

2

2

=⎧
⎪= = −⎨ ⎛ ⎞ >+ + ⎜ ⎟⎪ ⎝ ⎠⎩

  

for the ME model6, and 

( )

( )

( ) ( ) ( )
1̂

ˆ ˆ1

0
1

SS ME MEk k f k

f if MSB MSR
MSB f MSR

if MSB MSR
MSB

= + −

≤ ≤⎧
⎪= − −⎨

>⎪⎩

 

or 

( )

( )

2 2 2
( )
2 2 2 2

ˆ ˆ ˆˆ
ˆ ˆ ˆ

0

1
max 0, 0

e rSS

e r

m f
k

m
f if MSB

MSB f MSR
if MSB

MSB

σ σ σ

σ σ σ

+ +
=

+ +

=⎧
⎪= − −⎛ ⎞⎨ >⎜ ⎟⎪

⎝ ⎠⎩

 

for the SS model. 

The empirical shrinkage constants satisfy  ( ) ( ) ( )
2 2

ˆ ˆ ˆ0 1ME RP SSk k k≤ ≤ ≤ ≤ , 

( ) ( )
1 2
ˆ ˆ0 1RP SSk k≤ ≤ ≤  and ( ) ( )

1
ˆ ˆ0 1ME SSk k≤ ≤ ≤ . 

 

                                                 
 
6 Note that if we assume that the response error variance ( 2

rσ ) is known, we would obtain the same estimator 
for the shrinkage constant, which makes no use of this information. 
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3. Details of the simulation study 

 

We conducted a simulation study to compare the MSE of different empirical 

predictors in the context of a two-stage cluster sample from a balanced finite population.  

The simulation study is carried out in three steps: 1) generation of the finite population, 2) 

selection of two-stage cluster samples from the finite population, and 3) evaluation of 

predictors and empirical predictors for comparative purposes. 

 

3.1. Generation of the finite populations 

 

To encompass a broad number of situations, different compositions for the finite 

populations are considered. They differ with respect to: 1) the number of clusters, N  and 

the number of units within clusters, M , 2) the shape of the response distribution, and 3) the 

between cluster variance, 2σ . The presence (or not) of response error is considered at the 

sampling stage.  

We generate each population of units and clusters via the percentiles of some 

hypothetical distribution. The basic distributions from which we generate the finite 

populations are normal, uniform, beta, or gamma. These distributions are used only to 

generate the cluster means; their actual form is not used in the analysis. Although different 

distributions can be selected for units and clusters, we use the same distribution to generate 
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the unit effects for all clusters in each population. The cluster distribution may or may not 

agree with that for the units.  

For each simulation, the population is composed of N  clusters with M units per 

cluster. We represent each individual cluster parameter by sμ  and their mean by μ . We fix 

the variance between cluster parameters, 2σ , divide the [0,1] interval into 1N +  equally 

spaced intervals and obtain the percentiles corresponding to the upper limit of each interval 

from the appropriate probability distribution. We redefine the cluster parameters by 

centering them at μ  and re-scaling their values so that the variance matches 

( )2
2

1 1

N
s

s N
μ μ

σ
=

−
=

−∑ . 

Next, we generate unit effects for the M  units within each cluster using percentiles 

of a specified distribution.  The variance of the unit effects is set to be constant for all 

clusters. Unit effects are then re-scaled so that they have zero mean for each cluster and 

within cluster variance equal to a specified constant value represented by 2
eσ . The 

parameters for the cluster units are formed by adding the unit effect to the cluster mean and 

are represented by sty .  

Using 2σ , 2
eσ  and 2

rσ  we define the cluster intra-class and unit intra-class 

correlation coefficients. We assume that the response error is normally distributed for all 

clusters and units, with the response variance determined by specification of tρ  and 2
eσ .  

Note that 1tρ =  corresponds to the case with no response error. 
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The characteristics of the simulated populations are summarized in Table 1. Fifty-

six populations were generated in case 1, corresponding to all combinations of cluster and 

unit intra-class correlation coefficients. In cases 2 and 3, 336=(6x7x8) populations were 

generated and 56=(7x8) populations were generated in cases 4 and 5.  In total, 840 

populations were evaluated. 

 

Insert Table 1 here 

 

3.2. Two-stage cluster sampling 

 

Using a list of cluster labels, a simple random sample without replacement of n  

cluster labels is identified for each generated population.  The identified sample cluster 

labels are combined with the population data, and from these data following a similar 

process, a simple random sample without replacement of m  units in each sampled cluster is 

selected. When response error is considered, it is added to the unit parameters sty  during 

the selection of the two-stage samples.  We refer to this entire process as a ‘trial’. 

For each generated population under cases 1, 2, and 3 (Table 1), three cluster 

sampling fractions ( /F n N= = 0.2, 0.5 and 0.8) and three unit sampling fractions 

( /f m M= =  0.4, 0.6 and 0.8) are considered.  This results in nine sampling plans for each 

generated population.  For cases 4 and 5 (Table 1), three cluster sampling fractions ( F =  

0.2, 0.5 and 0.8) and seven unit sampling fractions ( f = 0.1, 0.2, 0.4, 0.5, 0.6, 0.8 and 0.9) 

are considered, resulting in 21 sampling plans for each generated population.  For each 
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population and sampling plan, the number of trials is 10000.  In total, 8904 different 

settings for population/sampling plans were simulated. 

 

3.3. Predictors and Empirical Predictors 

 

Once the two-stage samples are obtained, we compute the predictors and empirical 

predictors as detailed in Section 2.4 and 2.5, respectively. For the ME and the SS models we 

assume that the known values of 2σ  and 2
eσ  correspond to the between and within cluster 

variances, respectively. 

Assuming variance components are known, the observed MSE is denoted by SMSE 

and under the unknown variance assumption the observed MSE is denoted by EMSE. The 

latter correspond to the empirical predictors described in Section 2.6. 

 

 

4. Simulation Results 

 

To clarify the exposition, we present results in two sections. First, we evaluate the 

performance of each predictor (i.e., with known variance components) by comparing their 

SMSE in order to give a reference framework for the empirical predictor results. 

Second, we evaluate the performance of the empirical predictors (i.e., with 

estimated variance components). Initially, we calculate the relative loss in terms of EMSE 

with respect to SMSE that occurs when we replace the theoretical shrinkage constants by 
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their estimators obtained under each of the three competing models (i.e., when using the 

empirical predictors). Then, we determine under what settings each empirical predictor 

presents the best performance as well as under what settings they perform poorly. 

To compare the (empirical) predictors we consider three criteria. First, we identify 

the best (empirical) predictor for each setting as the one which presents minimum (EMSE) 

SMSE. As sometimes the differences between the (EMSE) SMSE of two (empirical) 

predictors is very small, we use the relative percent increase7 (RPI) in (EMSE) SMSE of 

each (empirical) predictor relative to the (EMSE) SMSE of the best (empirical) predictor to 

identify settings where two (empirical) predictors may be considered “equivalent”. We use 

RPI < 5% or RPI < 15% as a criteria for comparing the predictors or the empirical 

predictors, respectively. Finally, we also identify (empirical) predictors with poor 

performance (RPI > 50%) relative to the best (empirical) predictor.  

Initial simulation results indicated that the magnitude of the (EMSE) SMSE is only 

slightly affected by changes in the shape of the response distribution. In view of these 

results, we confine our subsequent analysis to cases 1, 4 and 5 (Table 1). A preliminary 

analysis also showed that the empirical predictors for the SS model with ( )
1̂

SSk  and for the 

RP model with ( )
1̂

RPk  generally have lower EMSE than those for which the shrinkage 

constants are ( )
2̂

SSk  and ( )
2̂

RPk , respectively, so that in subsections 4.2 and 4.3 we restrict the 

analysis to the former. Due to space limitations, only a few tables and figures are presented 

                                                 
 
7 The relative percent increase in A relative to B is defined as 

A-B
RPI = ×100%

B
. 
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for illustration purposes; a more extensive set of tables and figures are available at the web 

site. 

 

4.1 Performance of predictors 

 

The RP model predictor generally presents minimum SMSE. Only in a small 

number of settings, the ME or the SS model predictors showed minimum SMSE, generally 

for extreme values (0.01 or 0.99) of sρ  and tρ . For these settings, the RPI in SMSE of the 

RP model predictor relative to the best predictor is at most 0.03%, which may be justified 

by the variability introduced by the simulation process. 

To complete the study of the performance of the different predictors, we consider a 

relative comparison of their SMSE. For the sampling fractions considered here, Table 2 

shows the maximum relative percent increase in SMSE for the ME, the SS and the RP 

model predictors with respect to the best predictor (generally that obtained under the RP 

model). The RP model predictor is at least equivalent to the best predictor in all the 

settings. Excluding the RP model predictor, the ME model predictor is closer to the best 

predictor, having a lower maximum relative percent increase in SMSE than either the CM 

or the SS model predictors. As the number of clusters and the cluster sampling fraction 

increase, the relative percent increase (RPI) in SMSE also increases. 

 

Insert Table 2 here 
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In Table 3, we summarize general settings (depending on the cluster and unit intra-

class correlation coefficients and overall cluster and unit sampling fractions), where the 

CM, the ME and the SS model predictors have similar SMSE to that of the best predictor 

(generally the RP model predictor). 

 

Insert Table 3 here 

 

From Table 3 we observe that all predictors have similar performance when both intra-class 

correlation coefficients are high ( 0.95sρ ≥  and 0.5tρ ≥ ). The performance of the ME 

model predictor is more similar to that of the best predictor under a wider range of 

conditions (i.e. 0.95sρ ≥  or 0.2tρ ≤ ), followed by the SS model predictor when both 

intra-class correlation coefficients vary (from 0.5sρ ≥  and 0.8tρ ≥  to 0.99sρ ≥  and 

0.05tρ ≥  with one correlation coefficient increasing as the other decreases). 

The predictors derived under the ME model have poor performance (i.e. RPI > 

50%) when the cluster intra-class correlation coefficient is small ( 0.2sρ ≤ ), the unit intra-

class correlation coefficient is large ( 0.95tρ ≥ ) and the unit sampling fraction is large 

( 0.8f ≥ ) (see Figure A.2 in the web site). Both the SS model predictor and the CM 

perform poorly as intra-class correlation coefficients tend jointly to zero, but this happens 

for increasing f  in the case of the SS model predictor and for decreasing f  in the case of 

the CM (see Figures A.3 and A.1 in the web site). In contrast, the RP model predictor never 

presents poor performance. 
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4.2 Performance of empirical predictors 

 

 4.2.1. Evaluation of the loss due to the use of empirical predictors 

 

To evaluate the loss associated to the use of empirical predictors instead of those 

where variance components are known, we compute the RPI of the EMSE with respect to 

the SMSE for each predictor. For the ME and the RP models, the EMSE associated with the 

empirical predictors always overestimate the SMSE, while for the SS model empirical 

predictor, the EMSE overestimates the SMSE in 85% to 96% of the settings8. Table 4 

presents some descriptive statistics of the RPI of the EMSE with respect to the SMSE for 

each predictor, for the simulated populations (see also Figure A.4 in the web site for the 

corresponding box plots). 

 

Insert Table 4 here 

 

In general, the SS model empirical predictor presents a smaller amount of loss than 

the other two empirical predictors, showing |RPI| < 16% in 75% of the settings, followed by 

                                                 
 
8 The settings where EMSE underestimates SMSE generally correspond to situations where MSB MSR≤  for 
almost all samples. When this happens, we may expect *Y  to be a better predictor than *

iY . Additionally, 

when  MSB MSR≤  we generally have that ( ) ( )
1̂

SS SSk k≥ , so that the theoretical SS model predictor puts 

more weight on *
iY  (and less on *Y ) than the empirical predictor, producing the superiority of this last one.  
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the RP model empirical predictor and, lastly, by the ME model empirical predictor. These 

last two predictors show RPI lower than 35% and 38% in 75% of the settings, respectively. 

The worst performance for all predictors (not shown) is attained when unit-

sampling fractions are small, especially when both cluster and unit intra-class correlation 

coefficients decrease.  An exception occurs for the ME model empirical predictor, where 

this poor performance is also observed for high unit sampling fractions when 0.8tρ ≥  and 

for varying values of sρ  depending on population and cluster sampling fractions. 

 

 4.2.2. Comparison of the EMSE 

 

We compute the percentage of settings where each empirical predictor satisfies each 

of the three criteria previously established: a) minimum EMSE, b) “equivalence” to the best 

empirical predictor (i.e. RPI < 15%) and c) poor performance (RPI > 50%).  It should be 

noted that these percentages depend on the selection of settings, i.e. the specified 

population sizes and sampling plans considered in this investigation.  Nevertheless, such a 

summary is one way to provide an overall description of results. All these percentages are 

calculated considering the combination of all intra-class correlations and unit sampling 

fractions in the denominator, i.e., 168 (=7x8x3) for the populations with N=10 and M=5 

and 392 (=7x8x7) for the others (Tables 5 and 7). In some cases (identified by * in Table 

5), the sums of the percentages exceed 100% because the EMSE for the SS and RP model 

empirical predictors have exactly the same minimum value. In Table 5, the boldfaced 
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figuresidentify the percentage of settings for the two empirical predictors with the best 

performance for each type of population and cluster-sampling fraction. 

Considering the minimum EMSE, the RP model empirical predictor does not always 

have the best performance.  

 

Insert Table 5 here 

 

For populations with 10N = , the CM presents the minimum EMSE for small cluster 

sampling fraction ( 0.2F = ), followed by the RP model empirical predictor. As the cluster 

sampling fraction increases, the RP or the SS model empirical predictors appear as the two 

best ones. For populations with 50N = , the SS or the RP model empirical predictors also 

appear as the two best ones, with the first being better for small cluster sampling fraction 

( 0.2F = ) while the second, for moderate to large ( 0.5, 0.8F = ). 

We identify certain patterns (depending on sρ  and tρ ) where each empirical 

predictor can be considered equivalent (in terms of EMSE) to the best empirical one. Table 

6 summarizes these results (RPI < 15%) for all cluster and unit sampling fractions, but 

these regions may be extended for specific number and size of clusters and cluster or unit 

sampling fractions. 9 

 

Insert Table 6 here 

                                                 
 
9 The ‘white’ area in Table 6 (for 0.05sρ ≤  and 0.8tρ ≥ ) indicates that there is no best predictor over all 

cluster and unit sampling fractions.    
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Independently of the population characteristics and sampling fractions, the RP 

model empirical predictor is the best or equivalent to the best in a larger number of settings 

(90 to 100%) than any competitor (see Table 5). 

It is also important to note that, similar to the case of known variances, both the CM 

and the empirical predictor derived under the SS model have poor performance (RPI > 

50%) in many number of settings (up to 47% and 32%, respectively), followed by the ME 

empirical predictor (up to 7%) (see Table 7).  

 

Insert Table 7 here 

 

Particularly, the empirical predictors derived under the ME model show a poor performance 

when the cluster intra-class correlation coefficient is small ( 0.5sρ ≤ ), the unit intra-class 

correlation coefficient is large ( 0.8tρ ≥ ) and the unit sampling fraction is large ( 0.6f ≥ ). 

For these empirical predictors, the maximum overall RPI is 780%. The SS model empirical 

predictor and the CM perform poorly as the intra-class correlation coefficients tend jointly 

to zero, but this happens for increasing f  in the case of the SS model empirical predictor 

and for decreasing f  in the case of the CM. The RPI reaches an overall maximum value of 

1676% for the SS model empirical predictors and 2038% for the CM. In contrast, the RP 

model empirical predictor never has such a poor performance. This suggests that, in 

practice, this empirical predictor is more robust (in the sense of not having very bad 

performance) than its competitors. 
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5. Discussion  

 

The RP model empirical predictor shows a more stable performance than its 

competitors, being the best or equivalent to the best empirical predictor in 90-100% of the 

settings; furthermore, it never exhibits a poor performance. The response distributions 

under consideration have almost no effect on the values of the MSE.  

We also note that, in the absence of response error and when all the units in each 

sampled cluster are observed, both the SS and the RP model empirical predictors reproduce 

the cluster mean, while the ME model empirical predictor does not. This highlights the 

dependence of the ME predictor on the assumption of an infinite population. 

The superiority of the SS model empirical predictor under some of the settings 

considered in this investigation is due to a smaller loss in efficiency for the empirical SS 

predictor than for the empirical RP predictor. Nevertheless, the performance of the 

empirical predictor obtained under the RP model improves as the number of clusters and 

the cluster sampling fraction increase, becoming the best over a wider range of settings. 

The conclusions obtained in this study are restricted to the case of identical within 

cluster variances. However another study is in progress considering different within cluster 

variances and preliminary results are consistent with the present conclusions. Nevertheless, 

keeping the limitations of simulation studies in mind, our results point in the direction of 

recommending the RP model empirical predictor against its competitors in a variety of 

settings. 
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Table captions 

 

 

Table 1. Characteristics of the simulated populations and sampling plans 

 

Table 2. Maximum relative percent increase (RPI) in SMSE for the CM, the ME, the SS and 

the RP model predictors relative to the SMSE of the best predictor 

 

Table 3. Settings (depending on the intra-class correlation coefficients) where the CM, the 

ME and the SS model predictors have SMSE equivalent to that of the best predictor (RPI < 

5%) 

 

Table 4. Descriptive statistics for the relative percent increase (RPI) in EMSE relative to 

SMSE for each predictor 

 

Table 5. Percentage of settings where each predictor presents the best (minimum EMSE) or 

equivalent to the best (0 < RPI < 15%) performance  

 

Table 6. Settings (depending on the intra-class correlation coefficients) where the CM, the 

ME, the SS and the RP empirical predictors have similar performance (RPI < 15%) relative 

to the predictor with minimum EMSE 

 

Table 7. Poor performance of each empirical predictor
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Figure captions 

 

Figure 1. Behavior of theoretical shrinkage constants for different values of intra-class 

correlation coefficients and unit sampling fractions. The plots are organized in such a way 

that unit intra-class correlation coefficient tρ  increases from left to right and cluster intra-

class correlation coefficient sρ  increases from top to bottom. 
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