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Abstract
We obtain an optimal estimator for a domain (small area) total

using a linear least-squares prediction approach under a design-based
model. The optimal estimator is the same as that obtained under a
super-population model approach, and reproduces the classical form
of the synthetic estimator in an extreme case. Using the concept of
M-optimality, we generalize a well known theorem (Royall, 1976) orig-
inally considered for super-population models and extend the results
to include the estimation of the vector of the different domain totals.

Keywords: small area estimation, design based models, optimal estimation

1 Introduction

It is often the case that domains (many times referred to as small areas)

of interest are only specified after a survey has been designed and carried
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out. In such cases, the statistician′s dilemma is to produce accurate esti-

mates without being given the resources to collect the necessary data, as

highlighted by Holt et al. (1979). A reasonable solution is to employ data

from other sources to improve the estimates. This is the problem attacked

here. In particular, we seek accurate estimators of domain parameters of

interest (means, totals, quantiles, etc.) based on very small samples taken

therefrom.

Marker (1999) describes existing domain estimators in a stratified sam-

pling setup and organizes them from a general linear regression perspective.

He includes a derivation of the conditions under which it is possible to view

synthetic estimation as a form of regression. He also observes how the best

linear unbiased predictor (BLUP) for the average of a domain is obtained

using a super-population model approach (Bolfarine and Zacks, 1992) with a

one-way Analysis of Variance (ANOVA) model that assumes, as in synthetic

estimation, that all individual units belonging to the same stratum have the

same expected value, regardless of the domain where they come from. The

BLUP coincides with the synthetic estimator when there are no sampled data

from the domain of interest.

In this paper we study the problem of estimating domain totals in situ-

ations where the population, and consequently, each domain, is divided into

strata and inference rests on a design-based model. We assume that the sam-

pling scheme corresponds to stratified simple random sampling. We use this

approach instead of the one-way ANOVA super-population model discussed

in Holt et al. (1979).

In Section 2 we generalize Theorem 2.1 of Royall (1976) to obtain the

best linear unbiased estimator (BLUE) for any linear combination of the

individual parameters of the finite population, as well as for vector valued
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parameters of interest. In this setup, estimation is reduced to a prediction

problem under a model induced by the sampling scheme. In Section 3, we

describe the notation and derive the BLUE for a specific domain total as well

as for the vector of domain totals. Some concluding comments are presented

in Section 4.

2 Best linear unbiased estimation in finite

populations

Consider a vector y of N known constants, each of which is associated to a

labeled unit in a finite population. Consider also a vector of random variables

Y linked to y through a probability model. For example, Y may denote a

super-population from which y is a realization. Alternatively, the probabil-

ity model may be induced by the sampling scheme and its parameters are

explicitly associated to the finite population vector in such way that if we

observe Y completely we will know all the individual parameters in y.

Along the lines of Stanek et al. (2004), we focus our interest in a p × 1

vector of parameters of the form θ = Gt
∗y, where G∗ is a N × p matrix of

known constants. There are situations in which these parameters may also be

written as θ = GtY, as when the distribution of Y corresponds to the typical

random permutation model and our target parameter is the finite population

total, so that G∗ = G = 1N , where 1a denotes a vector of dimension a, with

all elements equal to 1. On the other hand, if our target is the individual

parameter associated to a specific unit in the finite population, for example,

unit 1, it follows that G∗ = e1, with e1 denoting an N -dimensional vector

with value one in the first position and zero in the remaining positions. Then

θ may not be written as GtY because the random permutation model does

not identify the units or labels in the finite population. Also, we may note
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that there are situations in which some characteristic of interest could be

written as GtY but not as Gt
∗y. This happens, for example, when our

interest is to predict the random variable that will appear in the ith position

in a permutation, i.e. when G = ei.

In this paper we consider finite population parameters that may be writ-

ten as θ = GtY. Let YS denote the portion of Y that is observed after the

sample is selected, and YR denote the remainder. We consider probability

models for which there exists a permutation matrix K = [Kt
S Kt

R]
t
such that[

YS

YR

]
=

[
KS

KR

]
Y.

In this context, the target parameter may be written explicitly as a linear

function of YS and YR, specifically,

θ = Gt
SYS + Gt

RYR, (1)

where Gt
S = GtKt

S and Gt
R = GtKt

R. Consequently, the problem of estimat-

ing θ is equivalent to that of predicting Gt
RYR, as pointed by Royall (1976)

for the case in which the parameter of interest is the finite population total.

Using the same model as in Royall (1976), we may write[
YS

YR

]
=

[
XS

XR

]
β + E, (2)

with E(Y) = Xβ, X = [Xt
S Xt

R]t and V(Y) =

[
VS VSR

VRS VR

]
is partitioned

in accordance to Y.

When the parameter of interest is scalar, it is common to search for the

estimator with minimal variance among unbiased estimators in some class

CE. For vector valued parameters, there are different ways of defining the

optimal estimator. We adopt the concept of M-optimality in the class of

unbiased estimators, i.e., we say that θ̂
∗
∈ CE is optimum if and only if θ̂

∗
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is unbiased for θ and V(ktθ̂
∗
) ≤ V(ktθ̂) for all k ∈ Rp and for all unbiased

θ̂ ∈ CE. This concept of M-optimality is based on the more concentrated

concept discussed in Lehmann and Casella (1998, p. 347). The next theorem

enables us to obtain such an optimal estimator.

Theorem 1 Consider the setup described in (2), and assume that XS has

full column rank. Among the linear estimators θ̂ = AYS satisfying E(θ̂ −
θ) = 0, the M-optimal estimator of θ is

θ̂
∗

= Gt
SYS + Gt

R[XRβ̂ + VRSV
−1
S (YS −XSβ̂)], (3)

where the weighted least-squares estimator β̂ = (Xt
SV

−1
S XS)−1Xt

SV
−1
S YS is

the BLUE of β. The corresponding prediction variance of θ̂
∗

is

E(θ̂
∗
− θ)(θ̂

∗
− θ)t = Gt

R(VR −VRSV
−1
S VSR)GR+

+Gt
R(XR −VRSV

−1
S XS)×

×(Xt
SV

−1
S XS)−1(XR −VRSV

−1
S XS)tGR.

The proof is presented in the Appendix.

The BLUE for a real valued linear combination of Y, i.e., θ = gtY =

gt
SYS + gt

RYR, may be directly obtained from Theorem 1. Thus, when the

parameter of interest is scalar, the estimator obtained from (3) coincides with

the BLUE obtained in Appendix B of Stanek and Singer (2004). We also

note that Theorem 2.1 of Royall (1976) is a special case of Theorem 1 above,

for G = 1N and GR = γ = 1N−n, with n denoting the sample size. Finally,

we observe that to estimate a vector valued linear combination of y, each

component is estimated optimally.

It is useful to mention at this point that since the theorem does not de-

pend on the source of randomness, it may be used either in a super-population
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setup or under a design-based model, the only requirement being the speci-

fication of the expectation and the covariance matrix. If XS is not a full col-

umn rank matrix but there is an unbiased estimator of θ, the theorem is still

valid if we use a generalized inverse, (Xt
SV

−1
S XS)−, instead of (Xt

SV
−1
S XS)−1.

Note that a necessary and sufficient condition for the existence of an unbiased

estimator of θ is that Xt
SX

t−
S Xt

RGt
R = Xt

RGt
R.

3 Notation and terminology for domain setup

We consider a finite population divided into J strata, and let Pj = {1, ..., Nj}
j = 1, . . . , J denote the set of labels of the Nj (assumed known) units in each

stratum. Associated with each unit in stratum j, there is a fixed value

(parameter) yjk, k = 1, ..., Nj. Let yj = (yj1 · · · yjNj
)t denote the vector of

such fixed values. The elements in each stratum are classified into I mutually

exclusive and exhaustive domains labeled i = 1, ..., I; these labels completely

classify the units into IJ cells, and we suppose, as in Holt et al. (1979), that

the population sizes Nij are known from previous censuses or from other

sources of accurate information. Note that Nj =
∑I

i=1 Nij.

Following Stanek et al. (2004), for all j = 1, ..., J and v = 1, ..., Nj, we

consider

Yjv =

Nj∑
k=1

U
(j)
vk yjk,

where U
(j)
vk is 1 if the unit k in stratum j is in position v after a random

permutation of its elements and U
(j)
vk = 0, otherwise. Consequently, Yjv

represents what is observed in position v of stratum j after the random

permutation. The vector of random variables Yj = (Yj1 · · ·YjNj
)t can be
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written as Yj = U(j)yj with

U(j) =


U

(j)
11 U

(j)
12 · · · U

(j)
1Nj

U
(j)
21 U

(j)
22 · · · U

(j)
2Nj

...
...

. . .
...

U
(j)
Nj1

U
(j)
Nj2

· · · U
(j)
NjNj

 .

Given the random structure of U(j), the corresponding expected value and

variance are respectively given by

E(Yj) = βj1Nj
and V(Yj) = σ2

jPNj
, (4)

where PNj
= INj

− N−1
j JNj

and JNj
= 1Nj

1t
Nj

. The term βj = N−1
j 1t

Nj
yj

is the mean and [(Nj − 1)/Nj]σ
2
j = N−1

j yt
jPNj

yj is the corresponding finite

population variance.

The vector of random variables can be compactly written as Y = (Yt
1 · · ·

Yt
J)t, and from (4), its expected value and covariance matrix may be, respec-

tively, re-expressed as

E(Y) =

[
J⊕

j=1

1Nj

]
β and V(Y) =

J⊕
j=1

σ2
jPNj

,

with
N⊕

j=1

Aj denoting a block diagonal matrix with blocks given by Aj (Searle,

1982).

Consider simple random samples of size nj, j = 1, ..., J , without replace-

ment obtained independently in each stratum. Under the random permuta-

tion setup, this is equivalent to observing the first nj elements of each Yj.

Let nij denote the number of elements belonging to domain i observed in

the sample of stratum j. For the time being, assume that all nij > 0 and

(Nij − nij) > 0. Since the selection of elements in each stratum is indepen-

dent of the domain to which they belong and since in a random permutation
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the elements are interchangeable, we may suppose that the first n1j elements

in Yj are from domain 1, the second n2j elements are from domain 2, and

so forth, up to the last nIj elements of the observed part of Yj, which are

assumed to come from domain I. On the other hand, we assume the same

structure for the Nij − nij non-observed elements of each domain.

Now we consider the problem of estimating certain domain characteristics,

conditionally on the observation of nij, i = 1, . . . , I, j = 1, . . . , J . Initially,

let the interest be focused on the total response for domain i, θi; next we

consider the vector of all domain totals, θ = (θ1, . . . , θI)
t. In both cases, the

parameter of interest may be written as a linear combination of the random

vector Y, i.e., θ = Gt
SYS + Gt

RYR. For the total response of domain i,

Gt
S = (1t

J ⊗ et
i)

J⊕
j=1

I⊕
i=1

1t
nij

and Gt
R = (1t

J ⊗ et
i)

J⊕
j=1

I⊕
i=1

1t
Nij−nij

, (5)

and for the vector of domain totals,

Gt
S = (1t

J ⊗ II)
J⊕

j=1

I⊕
i=1

1t
nij

and Gt
R = (1t

J ⊗ II)
J⊕

j=1

I⊕
i=1

1t
Nij−nij

. (6)

To estimate the parameters we use the techniques described in Section 2,

under model (2) with

XS =
J⊕

j=1

1nj
, and XR =

J⊕
j=1

1Nj−nj
.

Then,

VS =
J⊕

j=1

σ2
j (Inj

− 1

Nj

Jnj
),VSR =

J⊕
j=1

−1

Nj

σ2
jJnj×(Nj−nj), and
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VR =
J⊕

j=1

σ2
j (INj−nj

− 1

Nj

JNj−nj
).

The estimator of the total of domain i may be obtained by applying Theorem

1 and is given by

θ̂∗i =

[
(1t

J ⊗ et
i)

J⊕
j=1

I⊕
i=1

1t
nij

]
YS +

[
(1t

J ⊗ et
i)

J⊕
j=1

1

nj

(N?j − n?j)1
t
nj

]
YS,

(7)

with N?j = (N1j, N2j, · · · , NIj)
t and n?j = (n1j, n2j, · · · , nIj)

t. The mean

squared error of this predictive estimator is

MSE(θ̂∗i ) =
J∑

j=1

σ2
j

(Nij − nij)

nj

(Nij − nij + nj). (8)

If θ is the vector of totals for the domains, using (6) and (1), an application

of Theorem 1 leads to the estimator

θ̂
∗

=

[
(1t

J ⊗ II)
J⊕

j=1

I⊕
i=1

1t
nij

]
YS +

[
(1t

J ⊗ II)
J⊕

j=1

1

nj

(N?j − n?j)1
t
nj

]
YS.

Under this approach, the total response for each domain is optimally esti-

mated. The corresponding matrix of mean squared errors and cross products

is

MSE(θ̂
∗
) = E(θ̂

∗
− θ)(θ̂

∗
− θ)t

=
J∑

j=1

σ2
j

[
DN?j−n?j

+
1

nj

(N?j − n?j)(N?j − n?j)
t

]
, (9)

with Dx denoting a diagonal matrix with the elements of the vector x along

the main diagonal.
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When nij = 0 or (Nij − nij) = 0 for some strata j and domain i, expres-

sions (5) and (6) must be modified. First, let ñ?j contain only the terms with

nij > 0 and aiS be a vector obtained from ñ? =
(
ñt

?1 . . . ñt
?J

)t
by replacing

the terms nij by 1 and ni′j, i
′ 6= i, by 0 for all j. Also, let Ñ?j − ñ?j and aiR

be constructed similarly for the cells corresponding to (Nij − nij) > 0.

Then for the total of domain i, (5) must be replaced by

Gt
S = at

iS

 J⊕
j=1

⊕
i∈S̃j

1t
nij

 and Gt
R = at

iR

 J⊕
j=1

⊕
i∈R̃j

1t
Nij−nij

 (10)

where S̃j = {i : nij > 0} and R̃j = {i : (Nij − nij) > 0} and for the vector of

totals, (6) must be replaced by

Gt
S =

at
1S
...

at
IS


 J⊕

j=1

⊕
i∈S̃j

1t
nij

 and Gt
R =

at
1R
...

at
IR


 J⊕

j=1

⊕
i∈R̃j

1t
Nij−nij

 .

(11)

As a result, the required estimators are

θ̂∗i =

at
iS

 J⊕
j=1

⊕
i∈S̃j

1t
nij

YS+

[
at

iR

(
J⊕

j=1

1

nj

(
Ñ?j − ñ?j

)
1t

nj

)]
YS (12)

and

θ̂
∗

=


at

1S
...

at
IS


 J⊕

j=1

⊕
i∈S̃j

1t
nij


YS+


at

1R
...

at
IR

( J⊕
j=1

1

nj

(
Ñ?j − ñ?j

)
1t

nj

)YS,

(13)

their corresponding mean square errors being given by (8) and (9), respec-

tively. For illustrative purposes, an example with J = 2 and I = 3 is detailed

in the Appendix.
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4 Comments

We have shown that the BLUP obtained under the one-way ANOVA model

may be reproduced under a design-based model, without any restrictions

besides those induced by the sampling scheme. Since it is easier to attach

face value to such a model than to some other super-population models, we

feel that the estimators of the totals are better justified under the former

approach. Additionally, the design-based model facilitates the definition of

the parameters under investigation.

Previously, only the super-population model approach (Holt et al. 1979,

Royall, 1976, Bolfarine and Zacks, 1992) was considered in the literature.

We attacked the problem from a purely design-based approach and obtained

optimal estimators that provide a simple rationale to previously used do-

main estimators. The proposed estimator is intuitive in the sense that if the

population has a single stratum (J = 1), the estimator of the total for do-

main i reduces to niȳi + (Ni − ni)ȳ, that is, it estimates the response for the

units of domain i that are not in the sample using the observed overall mean

(ȳ) which encompasses information for all the other sampled domains (thus,

“borrowing information” from other domains). Moreover, the variance of the

estimator depends only on the finite population variances (σ2
j ) and not on

artificial variances imposed by the super-population model.

It is easy to show that θ̂∗i coincides with

T̂ ∗
i =

J∑
j=1

nij(ȳij• − ȳ•j•) +
J∑

j=1

Nij ȳ•j•,

as obtained by Holt et al. (1979) under a one-way ANOVA superpopulation

model, where ȳij• denotes the average response among all the elements in the

sample that belong to domain i and stratum j and ȳ•j• denotes the response

average of all the elements in the sample that belong to stratum j.
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Furthermore, when there are no sampled data from the domain of interest,

it coincides with the synthetic estimator, which for the total θi of domain i

is

T̂i =
J∑

j=1

Nijy•j•.

The accuracy of this estimator depends on the similarity between each stra-

tum and the domain and also on the accuracy of the weights. In situations for

which Nij is much greater than nij, the difference between both estimators

is immaterial.
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(FAPESP), FINEP (PRONEX) and Coordenação de Aperfeiçoamento de

Pessoal de Nı́vel Superior (CAPES), Brazil, Consejo de Investigaciones de la

Universidad Nacional de Tucumán (CIUNT), Argentina, and to the National

Institutes of Health (NIH-PHS-R01-HD36848), United States, for financial

support.

Appendix

Proof of Theorem 1: Let k ∈ Rp, so that θ = ktθ = ktGt
SYS + ktGt

RYR

is a real valued parameter. As shown by Stanek and Singer (2002, Appendix

B), the BLUE of θ is

θ̂∗ = ktGt
SYS + ktGt

R[XRβ̂ + VRSV
−1
S (YS −XSβ̂)] = ktθ̂

∗
.
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Accordingly, for every linear unbiased estimator of θ, i.e., θ̂ = atYS with a

denoting a vector of constants, it follows that

V(θ̂) = V(ktθ̂
∗
) ≤ V(atYS).

For all linear unbiased estimators of θ, i.e., θ̂ = AYS with A denoting a

matrix of constants, it follows that ktAYS is a linear unbiased estimator of

θ, so that

V(ktθ̂
∗
) ≤ V(ktθ̂) for all θ̂ = AYS and for all k ∈ Rp.

Consequently, θ̂
∗

is the M-optimal estimator of θ.

The corresponding predictor variance of θ̂
∗

follows easily after some ma-

trix operations.

Example: In Tables 1 and 2, we illustrate a finite population with J = 2,

I = 3, and the corresponding sample sizes.

Table 1: Finite population.
Strata (j) Domain (i) Nij

1 2 y11 y14

1 2 1 y13

3 2 y12 y15

1 0
2 2 3 y22 y23 y25

3 3 y21 y24 y26

In this case, y =
(
y11 . . . y15 y21 . . . y26

)t
and Y =

(
Y t

1 Y t
2

)t
=(

Y11 . . . Y15 Y21 . . . Y26

)t
.

To estimate the total of domain i, (10) and (12) are specified by taking

S̃1 = {1, 2}, S̃2 = {2}, R̃1 = {1, 3}, R̃2 = {2, 3},

13



Table 2: Sample sizes.
Strata (j) Domain (i) nij Nij − nij

1 1 1
1 2 1 0

3 0 2
1 0 0

2 2 2 1
3 0 3

Total 4 7

2⊕
j=1

⊕
i∈S̃j

1t
nij

=

1 0 0 0
0 1 0 0
0 0 1 1

 ,
2⊕

j=1

⊕
i∈R̃j

1t
Nij−nij

=


1 0 0 0 0 0 0
0 1 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 1 1

 ,

(
Ñ?1 − ñ?1

)
=

(
1
2

)
,
(
Ñ?2 − ñ?2

)
=

(
1
3

)
,

YS =
(
Y11 Y12 Y21 Y22

)t
, YR =

(
Y13 Y14 Y15 Y23 Y24 Y25 Y26

)t
,

a1S =
(
1 0 0

)t
, a1R =

(
1 0 0 0

)t
,

a2S =
(
0 1 1

)t
, a2R =

(
0 0 1 0

)t
and

a3S =
(
0 0 0

)t
, a3R =

(
0 1 0 1

)t
.

This results in the following estimators and corresponding MSE

θ̂∗1 = Y11 +
1

2
(Y11 + Y12) , MSE

(
θ̂∗1

)
=

3

2
σ2

1,
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θ̂∗2 = Y12 +
3

2
(Y21 + Y22) , MSE

(
θ̂∗2

)
=

3

2
σ2

2, and

θ̂∗3 = (Y11 + Y12) +
3

2
(Y21 + Y22) , MSE

(
θ̂∗3

)
= 4σ2

1 +
15

2
σ2

2.

For the vector of totals, from (9) with (N ?1 − n?1) =
(
1 0 2

)t
and (N ?2 − n?2) =(

0 1 3
)t

, we obtain

MSE
(
θ̂
∗)

=

3
2
σ2

1 0 σ2
1

0 3
2
σ2

2
3
2
σ2

2

σ2
1

3
2
σ2

2 4σ2
1 + 15

2
σ2

2

 .
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