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Abstract

We consider a well-known controversy that stems from the use of two mixed
models for the analysis of balanced experimental data with a fixed and a random
factor. It essentially originates in the different statistics developed from such models
for testing that the variance parameter associated to the random factor is null. The
corresponding hypotheses are interpreted as that of null random factor main effects
in the presence of interaction. The controversy is further complicated by different
opinions regarding the appropriateness of such hypothesis. Assuming that this is
a sensible option, we show that the standard test statistics obtained under both
models are really directed at different hypotheses and conclude that the problem
lies in the definition of the main effects and interactions. We use expected values
as in the fixed effects case to resolve the controversy showing that under the most
commonly used model, the test usually associated to the inexistence of the random
factor main effects addresses a different hypothesis. We discuss the choice of models,
and some further problems that occur in the presence of unbalanced data.

Key words: Mixed model, random effect, variance components.

1 Introduction

We consider the analysis of experiments with two factors (A and B) where response is

recorded for all (a) levels of factor A and for a randomly selected subset of (b) levels

of factor B with r replications for each factor level combination. A typical example is
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presented in Scheffé (1956a) and discussed by McLean et al. (1991); although no details

about the data collection process are presented, the authors refer to the study as an

industrial experiment with machines (a = 2) taken as the fixed factor and operators (b

= 3) taken as the random factor. Each machine produces small parts of the same kind

from homogeneous metal pieces, which we assume are the randomly assigned experimental

units on which some response variable is measured. The data are reproduced in Table 1

for the sake of self-containment.

Table 1: Data from McLean et al. (1991)

Machine (A) Worker (B)
1 2 3

1 51.43 50.93 50.47
51.28 50.75 50.83

2 51.91 52.26 51.58
52.43 52.33 51.23

We discuss the appropriate way to interpret and test the hypothesis of null factor

B main effects in the presence of AB interaction, motivated by a controversy over two

different statistics presumably directed at the same hypothesis. The advocates of each

model claim to test the null hypothesis of no factor B effects.

We show that what is being tested is not the same, and that the more commonly used

model is not testing the hypothesis that many would consider to be that of null factor B

effects. Before we attack the central problem under investigation, the relevance of testing

for null main effects (of factor B, for example) in the presence of interaction must be

placed into perspective. Some authors like Montgomery (1997, p.174) or Lindman (1992,

p.103) claim that this approach should be ruled out and that the analysis of factor B

main effects should be performed at each level of factor A. Other authors like John (1971,

p.70) or Mason et al. (1989, p.124) do not specify strategies to deal with the problem.

Cox (1984, p.16) or Neter et al. (1996, p.808) identify situations where such alternative

may be reasonable, as when the effects of factor B at the various levels of factor A have

the same direction, but different magnitudes. Cox (1984) refers to such interactions as

quantitative while Neter et al. (1996, p.808) term them unimportant. It is under such

settings that the question over how to appropriately test the null hypothesis of null factor
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B main effects in the presence of AB interaction is relevant.

In particular, suppose that one of the machines in the example of McLean et al. (1991)

is an old one, requiring more ability to operate while the other is a new one, easier to

operate. Suppose further, that more qualified workers tend to produce similar results (on

the average) with either machine, but that less qualified workers tend to produce different

results when working with the old or the new machine (i.e., a machine x worker interaction

is expected). We could still be interested in verifying whether (on the average) there are

worker main effects, i.e., whether the average results (across machines) are different among

workers. We focus our attention on making inferences for a population of workers and on

a formal test of the hypothesis of no worker main effects.

The tests that generate the controversy stem from two common models, the con-

strained parameters model (CP), and the unconstrained parameters model (UP) used in

the analysis of data with the structure described above. This has been recently discussed

by Voss (1999) with reader reactions by Hinkelmann (2000), Wolfinger and Stroup (2000)

and a reply by Voss (2000). Wolfinger and Stroup (2000) recommend the analysis based

on the UP model and Hinkelmann (2000) emphasizes that the general preference for such

a model is mainly explained by the existence of computer software. In light of the reader

reactions, Voss (2000) appears to reverse his previous recommendation.

We show that Voss’s apparent initial conclusion is correct and recommend use of the

CP model for testing the hypothesis of interest here. Our results are based on a definition

of the random factor main effects that corresponds to the classical definition under fixed

effects models and their relation to the associated parameters. We begin by defining

the UP and CP models, and briefly discussing the ample literature surrounding this

controversy in Section 2. Keeping in mind that main effects may be easily understood as

changes in expected values, in Section 3 we first define main effects and interactions under

a general model, then indicate how they are related to the corresponding parameters of

the UP and CP models. We show that the former is not compatible with the hypothesis

of interest. In Section 4, we simulate an example to illustrate our conclusions. Section

5 is devoted to computational aspects and extensions to the case where the numbers of

replications are not equal. Finally, we present a general discussion in Section 6.
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2 Definition of the Models and Background

Adopting the usual ANOVA notation, the unconstrained parameters (UP) model in Voss’s

(1999) terminology, may be expressed as

Yijk = µ + αi + Bj + (αB)ij + Eijk, (1)

i = 1, ..., a, j = 1, .., b and k = 1, ..., r, with
a∑

i=1

αi = 0 and Bj ∼ N(0, σ2

B), (αB)ij ∼

N(0, σ2

αB) and Eijk ∼ N(0, σ2) representing independent random variables. Under model

(1), αi is associated with the fixed level i of factor A, Bj is associated with the jth

randomly selected level of factor B and (αB)ij is associated with the interaction of level i

of factor A with the jth randomly selected level of factor B. In his formulation, Voss (1999)

does not consider the restrictions on the fixed effects, but we prefer to include them for

identifiability purposes. Many authors (Searle (1971), Milliken and Johnson (1984) and

the SAS (1990) software, for example) take H0 : σ2

B = 0 as the hypothesis of no factor B

main effects, concluding that MSB/MSAB is the appropriate test statistic.

The competing model, termed the constrained parameters (CP) model by Voss (1999)

corresponds to

Yijk = η + τi + Dj + (τD)ij + Eijk, (2)

i = 1, ..., a, j = 1, .., b and k = 1, ..., r, with
a∑

i=1

τi = 0, Dj ∼ N(0, σ2

D), (τD)ij ∼ N(0, (a−

1)σ2
τD/a) and Eijk ∼ N(0, σ2) representing independent random variables; additionally,

a∑
i=1

(τD)ij = 0, j = 1, .., b, which implies Cov((τD)ij, (τD)i′j) = −σ2

τD/a for i 6= i′ and

is zero otherwise. Under model (2), τi is associated with the fixed level i of factor A,

Dj is associated with the jth randomly selected level of factor B and (τD)ij is associated

with the interaction of level i of factor A with the j th randomly selected level of factor

B. The hypothesis H0 : σ2

D = 0 is taken as the hypothesis of no factor B main effects;

the standard test rejects H0 if MSB/MSE is sufficiently large. This is the approach

considered in Neter et al. (1996), Montgomery (1991) and others.

The tests obtained under the UP and the CP models (see Voss (1999), for example)

may generate conflicting results for testing what is thought of as the hypothesis of null

factor B main effects and this is the source of the controversy.
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Both the UP and CP models are special cases of the following model presented by

Scheffé (1959)

Yijk = µ + αi + Mij + Eijk, (3)

i = 1, ..., a, j = 1, .., b and k = 1, ..., r, with
a∑

i=1

αi = 0, Mij ∼ N(0, p+q), Cov(Mij, Mi′j) =

q, i 6= i′, Cov(Mij, Mi′j′) = 0, for all j 6= j ′ and Eijk ∼ N(0, σ2) denoting independent

random variables which in turn are independent of the Mij.

From (3), it follows that V ar(M1j , . . . , Maj) = pIa + qJa where Ia denotes an (a × a)

identity matrix and Ja denotes an (a× a) matrix with all elements equal to 1. Under the

UP model, we have Mij = Bj + (αB)ij with Bj ∼ N(0, σ2

B) and (αB)ij ∼ N(0, σ2

αB) so

that p = σ2

αB and q = σ2

B. On the other hand, under the CP model, Mij = Dj + (τD)ij

with Dj ∼ N(0, σ2

D), (τD)ij ∼ N(0, (a − 1)σ2

τD/a), Cov((τD)ij, (τD)i′j) = −σ2

τD/a so

that p = σ2
τD and q = σ2

D − σ2
τD/a.

Taking µ = η, αi = τi, σ2

B = σ2

D − σ2

τD/a and σ2

αB = σ2

τD, Hocking (1973) shows that

the UP and CP models are equivalent. Therefore, the hypothesis H0 : σ2

B = 0 under the

UP model is equivalent to H0 : σ2
D − σ2

τD/a = 0 under the CP model; alternatively, the

hypothesis H0 : σ2

D = 0 under the CP model is equivalent to H0 : σ2

B + σ2

αB/a = 0 under

the UP model. This indicates that H0 : σ2

B = 0 and H0 : σ2

D = 0 are not equivalent

and that the controversy is not related to the choice between the two contending models

but to the definition of the random factor main effects and its expression in terms of the

components of each model.

Hocking (1973) addresses this issue, but he suggests that the choice between the two

competing hypotheses, H0 : σ2

B = 0, under the UP model or H0 : σ2

D = 0, under the CP

model commonly interpreted as that of no factor B main effects should be made by the

researcher in the light of the subject matter problem under investigation. Voss (1999),

on the other hand, attempts to resolve the controversy by embedding both models in

a finite population setting (which he terms a super-population) in which all possible b∗

levels of the random factor (B) are included and defines the main effects of B as in a

fixed effects model. This basic idea dates back to Tukey (1949) and Scheffé (1956b). Voss

(1999) relates either the random variable Dj in the CP model, or the random variable

Bj + (αB)
·j −B· − (αB)

··
, with (αB)

·j, B· and (αB)
··

denoting a−1
a∑

i=1

(αB)ij, b∗−1
b∗∑

j=1

Bj
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and (ab∗)−1
a∑

i=1

b∗∑
j=1

(αB)ij respectively, in the UP model to the B main effects. Then he

shows via conditioning on the b selected levels of the random factor that under either

model, E(MSB) measures error variability plus ”main effects of B”, concluding that the

appropriate test statistic for null factor B main effects is MSB/MSE in both cases. Voss

(1999) neither defines the main effects of the random factor explicitly , nor extends results

to the case where the random factor has infinite levels.

Wolfinger and Stroup (2000) comment that placing both the UP and the CP models

under a finite population setup does not resolve the controversy because this is where the

CP model has its theoretical basis. They recommend use of the UP model coupled with a

likelihood-based inference approach and discuss the hypotheses in terms of the covariance

structure. They do not try to define or interpret the main effects of the random factor

nor the variance components in terms of potentially observable quantities. The lack of

a definition for the main effects of the random factor B seems to be the major cause of

the misunderstanding. The objective of this paper is to specify the relation between the

main effects of the random factor B and the parameters in both models.

3 Definitions of main effects and interactions in mixed

models

Using model (3), we may define main effects and interactions in terms of expected values,

just as in the case of fixed effects models. First, we clarify the underlying probability

structure. Let Ω denote the set of all levels of factor B and Θ denote the set of all

experimental units. Then, let Yijk, Mij and Eijk be random variables defined on the space

Ω × Θ such that

i) For a given (ω, θ) ∈ Ω×Θ, neither the response nor the random error term depend

on the order of selection of ω and θ, i.e.,

Yijk(ω, θ) = Yij′k′(ω, θ) = Yi∗∗(ω, θ),

and

Eijk(ω, θ) = Eij′k′(ω, θ) = Ei∗∗(ω, θ).
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ii) For a given ω, the random effect term depends neither on θ nor on the order of

selection of ω, i.e.,

Mij(ω, θ) = Mij′(ω, θ) = Mi∗(ω, θ).

iii) For a given ω, the random effect term has a null expected value, i.e.,

EΘ(Eijk(ω, ·)) = 0.

Then, under the assumptions of model (3), we have EΩ×Θ(Yijk(·, ·)) = µ + αi, µ =

a−1
a∑

i=1

EΩ×Θ(Yijk(·, ·)), EΩ×Θ(Mij(·, ·)) = 0 and EΘ(Mij(ω, ·)) = Mi∗(ω).

The main effect of level i of factor A may be defined as

1

br

b∑

j=1

r∑

k=1

EΩ×Θ(Yijk(·, ·)) −
1

abr

a∑

i=1

b∑

j=1

r∑

k=1

EΩ×Θ(Yijk(·, ·)) = αi,

and the hypothesis of null factor A main effects reduces to αi = 0, for all i = 1, . . . , a, or

equivalently, to
a∑

i=1

α2

i = 0.

Similarly, for every ω ∈ Ω, the main effect of level ω of factor B may be defined as

1

abr

a∑

i=1

b∑

j=1

r∑

k=1

EΘ(Yijk(ω, ·)) −
1

abr

a∑

i=1

b∑

j=1

r∑

k=1

EΩ×Θ(Yijk(·, ·)) =
1

a

a∑

i=1

Mi∗(ω) = M ·∗(ω).

This definition of factor B main effects is similar to that of fixed factor models. It is the

difference between the expected response for a fixed level ω of factor B and the overall

expected response. In the example described in the Introduction, this corresponds to

the difference between the expected response across both machines for worker ω and the

overall expected response (across all workers and both machines). Therefore, testing that

the factor B main effects are null corresponds to testing that M ·∗ is null for (almost) all

ω ∈ Ω, which, in turn, is equivalent to testing that V arΩ(M ·∗(·)) = 0, or equivalently

that q + a−1p = 0 if we refer to model (3) variance components. Under the UP model,

it follows that V arΩ(M ·∗(·)) = 0 corresponds to σ2

B + σ2

αB/a = 0; under the CP model,

on the other hand, V arΩ(M ·∗(·)) = 0 is equivalent to σ2

D = 0 so that in both cases, the

appropriate test is based on MSB/MSE.

We may also define the interaction between level i of factor A and level ω of factor B

as

1

br

b∑

j=1

r∑

k=1

[EΘ(Yijk(ω, ·))−EΩ×Θ(Yijk(·, ·))]−
1

abr

a∑

i=1

b∑

j=1

r∑

k=1

[EΘ(Yijk(ω, ·))−EΩ×Θ(Yijk(·, ·))] =
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Mi·(ω) − M ·∗(ω).

As in fixed factor models, this interaction measures how the effect of level ω of factor

B under level i of factor A differs from the overall effect of level ω of factor B, so that

null interaction corresponds to
a∑

i=1

V arΩ[Mi·(·)−M ·∗(·)] = 0, or explicitly, to p = 0 under

model (3). Again using (1) and (2), we may show that this corresponds to σ2

αB = 0 under

the UP model or to σ2

τD = 0 under the CP model.

At this point we observe that the controversy occurs only in the presence of interaction

(σ2

αB > 0 or σ2

τD > 0). If we agree with the definition of factor B main effects, the UP

model does not allow us to test the hypothesis that they are null in the presence of

interaction, since σ2

B + a−1σ2

αB = 0 and σ2

αB > 0 are incompatible conditions.

4 Simulated illustration

We simulate some situations with different patterns of factor B main effects and AB

interactions under model (3) and use them to illustrate their relations to the parameters

in the CP and UP models. For simplicity and without loss of generality, we consider only

two levels for the fixed factor A. Reasoning as in fixed effects models, we interpret factor

B main effects as differences between the expected responses at factor B levels and the

overall expected response; if such differences are all null, we say that the factor B main

effects are null. Similarly, AB interactions may be interpreted as differences between the

expected responses at the two levels of factor A for each level of factor B . If all such

differences are equal, we say that the AB interaction is null. The patterns we consider

are described in Table 2.

The expected responses at the different levels of factor B may be generated from (3)

disregarding the variability of the unit effects Eijk. We arbitrarily chose different values

for µ, αi, p and q and generate 100 expected responses (corresponding to 100 levels of

factor B) for each case in Table 2. In the context of the industrial experiment described in

Section 1, the expected response for worker ω in machine i is µ + αi + Mi.(ω) so that the

required sample of expected responses may be obtained by generating a random sample

of size 100 from a normal distribution with mean µ+αi and variance p+ q. Theoretically,

an infinite number of expected responses could be generated. The results (ordered by the

8



Table 2: Patterns of factor B main effects and AB interactions

Case Main effects and Restrictions on parameters
interaction pattern Scheffé´s Model UP Model CP Model

1 B main effects + p > 0, q > 0 σ2

B
> 0, σ2

αB
> 0 σ2

D
> σ2

τD
/2 > 0

AB interaction
2 B main effects + p > 0, q = 0 σ2

B
= 0, σ2

αB
> 0 σ2

D
> 0, σ2

τD
> 0

AB interaction
3 Null B main effects + p > 0, q = −a−1p Incompatible σ2

D
= 0, σ2

τD
> 0

AB interaction
4 B main effects + p = 0, q > 0 σ2

B
> 0, σ2

αB
= 0 σ2

D
> 0, σ2

τD
= 0

null AB interaction

magnitude of factor B expected responses) are presented in Figures 1, 2, 3, and 4.

Figures 1 and 2 indicate non-null factor B main effects (different expected responses

across machines for different workers in reference to the example) in the presence of AB

interaction (varying differences in expected response under machines 1 and 2 for different

workers). Since the values in Figure 2 were generated with σ2
B = 0, it seems clear that

the corresponding hypothesis is not related to null factor B main effects. Figure 3, on the

other hand, depicts a situation with null factor B main effects (equal expected responses

across machines 1 and 2 for different workers) in the presence of AB interaction. This

corresponds to a situation for which the UP model is not appropriate, but is clearly

compatible with the hypothesis σ2

D = 0. The situation presented in Figure 4 indicates

that both models are equivalent for cases where there are factor B main effects but null

AB interactions.

Figure 1: Factor B means at levels A1 and A2 of factor A (p = 32; q = 48)

Insert Figure 1 here

Figure 2: Factor B means at levels A1 and A2 of factor A (p = 16; q = 0)

Insert Figure 2 here
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Figure 3: Factor B means at levels A1 and A2 of factor A (p = 32; q = 16)

Insert Figure 3 here

Figure 4: Factor B means at levels A1 and A2 of factor A (p = 0; q = 16)

Insert Figure 4 here

For each case described in Table 2, we selected a simple random sample of 10 levels

of factor B and simulated r = 6 replicates from the distribution of the response error

with σ2

D = 2, i.e., we simulated the response variable for 6 units under each combination

of the levels of factor A and selected levels of factor B. The samples were selected with

replacement out of the 100 available levels of factor B to mimic a random selection from

an infinite population. In Table 3, we present the mixed model ANOVA results obtained

under both the CP and UP models.

Table 3: Mixed model ANOVA for the simulated data

Case Tests for null variance components
σ2

D
= 0 σ2

B
= 0 σ2

αB
= 0 or σ2

τD
= 0

1 F=198.02 (df= 9, 100) F=4.24 (df= 9, 9) F=46.65 (df= 9, 100)
p < 0.001 p = 0.021 p < 0.001

2 F=42.72 (df= 9, 100) F=0.94 (df= 9, 9) F=45.51 (df= 9, 100)
p < 0.001 p = 0.537 p < 0.001

3 F=0.83 (df= 9, 100) F=0.021 (df= 9, 9) F=36.57 (df= 9, 100)
p = 0.591 p = 1 p < 0.001

4 F=38.91 (df= 9, 100) F=72.79 (df= 9, 9) F = 0.535 (df = 9, 100)
p < 0.001 p < 0.001 p = 0.846

The conclusions are all consistent with models underlying the generated data. In

particular we draw attention to the non-significant result of the test for σ2
B = 0 in Case

2, where the hypothesis of a null factor B main effect is clearly false.
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5 Extensions to unbalanced data

Many authors like Wolfinger and Stroup (2000) discourage the use of the CP model on

account of the lack of flexibility of the available software for the UP model as well as of

the difficulty in dealing with unbalanced data (i.e., with different numbers of replicates).

The developments for unbalanced data are more complex, although the definitions of

main effects given in Section 3 still hold. When unbalance is due to unequal numbers

of replicates, it is well known that the usual ANOVA test statistic for σ2

B = 0 does

not follow an F distribution. Öfversten (1993) proposes exact tests for null variance

components in unbalanced mixed linear models that coincide, in balanced cases, to the

usual exact F-tests. These tests may be implemented under the UP model and with

little additional effort, under the CP model, but they are not yet available in commercial

statistical software packages. Otherwise, we may rely on likelihood ratio tests, but we must

recall that under the null hypotheses, the parameters lie on the boundary of the parametric

space and the test statistics follow approximate chi-bar distributions, as indicated in Self

and Liang (1987) and Stram and Lee (1994).

Although software like Proc GLM and Proc MIXED in SAS are useful tools for the

analysis of unbalanced mixed models, they do not provide exact tests for null variance

components. In fact, the available (Wald) tests in Proc MIXED are only rough approxi-

mations. On the other hand, according to the definitions in Section 3, a test for σ2
B = 0,

under the assumption that σ2

αB > 0, does not correspond to a test of null random factor

main effects.

Using the data in Table 1, we compare the different tests available in SAS with that

proposed by Öfversten (1993). The response for worker 2 and machine 2 (52.33) was

deleted to induce unbalance in the data. The results are displayed in Table 4 for the

balanced data and in Table 5 for the unbalanced data.

Since both the ANOVA and the GLM procedures in SAS rely on the UP model, the

balanced data tests for σ2
B = 0 and σ2

αB = 0 are obtained directly from the output.

However, if we really want to test null factor B main effects we should test for σ2

B +

σ2

αB/a = 0, but such a test is not given directly by SAS. Under the UP model, SSB/(σ2 +

arσ2
B + rσ2

αB) and SSE/σ2 are chi-squared independent random variables, so that, under
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Table 4: Tests for null variance components for the balanced data in McLean et al. (1991)

Tests for null variance components
σ2

D
σ2

B
σ2

αB
or σ2

τD

ANOVA

proc ANOVA F=11.95 (df=2,6) F=3.85 (df=2,2) F=3.10 (df=2,6)
proc GLM P=0.0081 P=0.2061 P=0.1188

Exact Test

Öfversten (1993) F=11.95 (df=2,6) F=3.85 (df=2,2) F=3.10 (df=2,6)
P=0.0081 P=0.2061 P=0.1188

Wald Test

proc MIXED Z=0.92 Z=0.72 Z=0.67
P=0.3601 P=0.2368 P=0.2526

H0 : σ2

B +σ2

αB/a = 0, MSB/MSE is an exact F statistic, with b−1 and ab(r−1) degrees

of freedom, and we can use MSB and MSE from the SAS output to compute this test.

If we consider the CP model, the corresponding test for σ2

D = 0 can be obtained similarly.

For unbalanced data, the GLM procedure produces an approximate F-test for σ2
B = 0

obtained from type III sums of squares by reproducing the balanced data computations,

i.e., by using MSB/MSAB. Computing the test for σ2

D = 0 under the CP model in the

same fashion, i.e., using MSB/MSE, we obtain an exact F-test that coincides with that

obtained using Öfversten’s techniques.

Öfversten (1993) mentions that his procedure produces unbalanced data exact F-

tests for any situation where an exact F-test may be obtained under the corresponding

balanced data case. However, it is not clear how to perform the computations required

to test σ2

B + σ2

αB/a = 0 under the UP model.

6 Discussion

The apparent controversy for balanced 2 factor mixed models ANOVA stems from the

similarity between the two competing models (UP and CP) and the usual fixed effects

model. The authors advocating one or the other seem to base their conclusion on the

variance parameter (σ2

B or σ2

D) associated with the random factor (Bj in the UP model

and Dj in the CP model), and assume that testing whether they are null is equivalent
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Table 5: Tests for null variance components for the unbalanced data in McLean et al.
(1991)

Tests for null variance components
σ2

D
σ2

B
σ2

αB
or σ2

τD

ANOVA

proc GLM F=9.77 (df=2,5) F=5.55 (df=2,2) F=1.76 (df=2,5)
P=0.0187 P=0.1527 P=0.2636

Exact Test

Öfversten (1993) F=9.77 (df=2,5) F=9.11 (df=2,2) F=1.76 (df=2,5)
P=0.0187 P=0.0989 P=0.2636

Wald Test

proc MIXED Z=0.89 Z=0.81 Z=0.29
P=0.3745 P=0.2100 P=0.3860

to testing for null factor B main effects. Voss (1999) attempts to resolve the controversy

by embedding the problem in a setting where the number of levels of the random factor

is finite but seems not to address the crux of the problem which, we believe, lies in an

appropriate definition of the random factor main effects and interaction.

Characterizing null factor B main effects by asserting that (almost) all factor B ex-

pected responses are equal, resolves the controversy. We may recall the work of Scheffé

(1959), who defines the random factor main effects under a more general model where

V ar(M1j , . . . , Maj) = Σ, a symmetric positive semi-definite matrix. The results also hold

in this case.

An alternative approach to the problem is to base the analysis on the choice of some

special structure for the covariance matrix for the data and to specify hypotheses directly

in terms of the dispersion parameters. Under such an approach, no attention is placed on

the interpretation of the dispersion parameter, or the main effects of the random factor.

We may test if some variance component is zero, but unless the variance component has

a meaningful interpretation, it is not clear what is accomplished. According to Wolfinger

and Stroup (2000), testing that σ2
B = 0 under the UP model corresponds to testing

whether observations sharing the same level of B are equicorrelated. This is not true,

since the covariance between the responses obtained under the same level of factor B is

σ2
B + σ2

αB if they share the same level of factor A and is σ2
B otherwise. We have shown
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that σ2
B = 0 is related to the main effects of factor B but it does not mean that they are

null. For such, under this model, we need the additional requirement that σ2

αB = 0, but

then, there is no controversy at all.

We also note that the choice of the UP model advocated by many authors is rec-

ommended in view of its computational advantages as well as that of being more easily

employed in the analysis of unbalanced cases. McLean et al. (1991) suggest that when

the purpose is to evaluate estimable functions and the associated standard errors, mixed

model procedures (MMP) may be used (for both the UP and CP models) without any

distinction between balanced and unbalanced cases to construct prediction intervals for

the random effects. Even in such cases, formal tests of hypotheses might be of interest

when an overall picture needs to be drawn.

We believe that the controversy under discussion here is a consequence of the formal

similarity between the CP and UP models and we agree with Wilk and Kempthorne

(1955), who state in a more general context, that ”Because the models employed are

often not explicitly related to the experimental situation, there has been some difficulty

in deciding just what the analysis of variance measures”. In fact, these authors develop

a framework for analysis of variance based on finite population models and on the sam-

pling/randomization characteristics of the underlying experiments in such a way that

factor level effects are defined prior to introducing random variables that represent the

sampling or randomization. This framework is consistent with the ideas of potentially

observable responses that underlies inference in experimental design. Their proposal en-

compasses the two-factor mixed model as a special case and the main effects for the

random factor are tested in the same manner as in the CP model. Zyskind (1962) formal-

ized and expanded this setting to a broad variety of experimental and sampling designs

so that the results considered here are potentially applicable in more general setups.
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Scheffé, H. (1959) The Analysis of Variance. New York: Wiley.

Searle, S.R. (1971). Linear Models. New York: Wiley.

Self, S.G. and Liang, K-Y. (1987). Asymptotic Properties of Maximum Likelihood Es-

timators and Likelihood Ratio Test Under Nonstandard Conditions. Journal of the

American Statistical Association, 82, 605-610.

Stram, D.O. and Lee, J.W. (1994). Variance Components Testing in the Longitudinal

Mixed Effects Model. Biometrics, 50, 1171-1177.

Tukey, J.W. (1949). Interaction in a Row-by-Column Design. Memorandum Report 18,

Statistical Research Group, Princeton University.

Voss, D.T. (1999). Resolving the Mixed Models Controversy. The American Statistician,

53, 352-356.

Voss, D.T. (2000). Resolving the Mixed Models Controversy, Reply. The American

Statistician, 54, 229-230.

Wilk, M.B. and Kempthorne, O. (1955). Fixed, Mixed and Random Models. Journal of

the American Statistical Association, 50, 1144-1167.

Wolfinger, R. and Stroup, W.W. (2000). Resolving the Mixed Models Controversy,

Comments. The American Statistician, 54, 228.

16



Zyskind, G. (1962). On structure, relation, Σ, and expectation of mean squares. Sankhya:

The Indian Journal of Statistics, Series A, 24, 115-148.

Résumé

Nous considérons une controverse bien-connue provenant de l’emploi de deux modèles

mixtes avec un facteur fixé et un facteur aléatoire pour l’analyse de données expérimentales.

Le problème provient essentiellement des statistiques differentes developpées à partir de

ces modèles pour tester que le paramètre de variance associé au facteur aléatoire est nul.

Les hypothèses correspondantes sont interprétées comme celles de l’inexistence de l’effet

principal du facteur aléatoire en présence de l’intéraction entre les deux facteurs. La

controverse est rendue plus complexe encore par les différentes opinions sur la propriété

de cette hypothèse. En admettant que le choix est sensé, nous montrons que les statis-

tiques usuelles obtenues à partir des deux modèles s’adressent réellement à des hypothèses

différentes et nous arrivons à la conclusion que le problème est causé par les définitions

des effets principaux et de l’interaction. Nous utilisons des valeurs moyennes comme dans

le cas de modèles à effets fixés pour résoudre la controverse et nous montrons que selon le

modèle plus utilisé, le test généralement associé a l’inexistence de l’effet principal du fac-

teur aléatoire en présence de l’intéraction s’adresse, en realité, à une hypothèse différente.

Nous discutons du choix des modèles et d’autres problèmes qui interviennent en présence

de données non-équilibrées.
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