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Abstract

We consider exact F' tests for the hypothesis of null random factor effect in the
presence of interaction under the two factor mixed models involved in the mixed
models controversy. We show that under the constrained parameter (CP) model,
even in unbalanced data situations, MSB/MSE (in the usual ANOV A notation)
follows an exact F' distribution when the null hypothesis holds. We also obtain an
exact F' test for what is generally (and erroneously) assumed to be an equivalent
hypothesis under the unconstrained parameter (UP) model. For unbalanced data,
such the corresponding test statistic does not coincide with MSB/MSAB (the test
statistic advocated for balanced data cases). We compute the power of the exact
test under different imbalance patterns and show that although the loss of power
increases with the degree of imbalance, it still remains reasonable from a practical
point of view.

Key words: FExact test, Householder orthogonal transformation, mixed model, random

effect, variance components.

1 Introduction

Mixed models are mainly considered for the analysis of observational studies, although
they may also be employed under some experimental designs as indicated in Hinkelmann
and Kempthorne (1994, Sec. 9.7.5), for example. The so-called mixed model controversy
arises in situations where the data can be described by means of a two-way classification
with a fixed factor A, with a levels, a random factor B, with b levels and r replicates.
In this context, two mixed models have been commonly employed. The unconstrained

parameters (UP) model is



Yiik = p+ o + B + (aB)j + Eiji, (1)

fori=1,..,a, 7 =1,.,band k = 1,...,r, with (By,..., By)' ~ N(0,0%1;), ((aB)11, ...,
(aB)ab>t ~ N(07 O-iBIab>7 (E1117 teey Elb?‘; PRERS) Ea117 crey EabT‘)t ~ N(()? O-QIabT) representing
independent random vectors and I,, denoting an n X n identity matrix. The second model
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Yijk =0+ 7+ Dj + (7D)i; + Eiji, (2)

fori =1,...,a, 7 =1,..,band k = 1,...,r, with in =0, (Dy,...,Dp)t ~ N(0,051),
((tD)11, .., (TD)ap)t ~ N(0,0%,P, ® I,) and (Ellllz,l...,Elbr, coos Egpr)t ~ N(0,0%1,) re-
presenting independent random vectors, where ® denotes the Kronecker product, P,, =
I, —n"'J, and J,, denotes an n X n matrix with all elements equal to 1. Under model (2),
Cov((rD);;, (TD)ij) = —02p/a for i # ¢'. This setup may be reproduced by assuming
that the D;, (7D);; and Ejjj, are independent of each other, that E;j, ~ N (0, 0?) are inde-
pendent, that D; ~ N(0,0%), i = 1, ..., a, are independent, and that (7D);; ~ N(0,02,),
i=1,...,a, j = 1,..,b with Za:(TD)ij =0, j =1,..,b. Because of the restriction on the
(1D);j, the model is termed l;nstmmed parameters (CP) model. Both models have been
considered by many authors, like Searle (1971), Milliken and Johnson (1984), SAS (1990),
Montgomery (1997), Neter et al. (1996), Voss (1999) and Lencina et al. (2005).

The controversy relates to the different statistics obtained under the two models for
testing what presumably is the hypothesis of nonexistence of the random factor main ef-
fects in the presence of interaction. The major problem is that one may obtain conflicting
results. More specifically, under the UP model, Hy : 0% = 0 is interpreted as the hypoth-
esis of nonexistence of the random factor main effects and M SB/MSAB (in the usual
ANOVA notation) is the appropriate test statistic; under the CP model, Hy : 0%, = 0
is interpreted similarly and the standard test rejects Hy if MSB/MSE is sufficiently
large. Voss (1999) and Lencina et al. (2005), using different arguments, conclude that
only MSB/MSE is suitable to test the hypothesis of interest, i.e., of the nonexistence

of the random factor main effects in the presence of interaction. In fact, Hocking (1973)

and Lencina et al. (2005) argue that the problem is not to choose what model to use



but how to express the hypothesis in terms of the model parameters. The latter do not
argue against the UP model but do argue against using Hy : 0% = 0 as the hypothesis of
nonexistence of the random factor main effects in the presence of the interaction.

Many authors, like Hinkelmann (2000) and Wolfinger and Stroup (2000) mention that
the UP model is being used more extensively because of the availability of commercial
software for analysis using it. In particular, they argue that it may be employed for
unbalanced data, i.e. (1) and (2) with & = 1,...,n;;, where n;; > 0, ¢ = 1,...,a, j =
1,...,b is the number of observations under level i of factor A and level j of factor B
and recommend its use along with likelihood-based inferential procedures. The picture
for unbalanced data, however, is not as clear as suggested by these authors. Although it
is true that UP model based software, like Proc Mixed in SAS, are useful tools for the
analysis of unbalanced mixed models, we must keep in mind that usually they do not
provide exact tests for null variance components under such conditions. The available
Wald and likelihood ratio tests are only approximations, since they rely on asypmtotic
arguments. Moreover, since under the null hypothesis, the parameter lies in the boundary
of the parametric space, such large sample tests do not follow chi-squared distributions as
indicated in Stram and Lee (1994) and more recently in Crainiceanu and Ruppert (2004).
The question addressed in this paper is whether we can obtain exact tests for the relevant
hypotheses under the models involved in the controversy.

In Section 2 we introduce the general linear mixed model and specify it for the UP
and the CP models; then we show that under the CP model, M SB/MSFE obtained from
the ANOV A table has an exact F distribution when the hypothesis Hy : 0%, = 0 holds,
even in unbalanced data cases. In Section 3 we consider the transformation proposed by
Ofversten (1993) to obtain exact F' tests for the hypotheses Hy : 0% = 0, under the UP
model and Hy : 0% = 0, under the CP model. This is in line with Lencina et al. (2005),
who observe that the test statistics coincide with those of the ANOVA table either for
balanced or unbalanced data under the C'P model, but not under the UP model. In Section
4, we consider a simulation study to evaluate the power of the test for Hy : 0% = 0 under
different unbalanced data patterns and compare the simulated power with that obtained
under balanced situations; we also obtain a lower bound to the power of the tests. We

summarize the results in Section 5.



2 The general linear mixed model specification

The general linear mixed model may be written as

Y =XB8+Zb+E, (3)

where Y is the observed vector of responses, 3 is a vector of unknown fixed effects, b is
a vector of unobservable random effects, X is the model specification matrix for the fixed
effects, Z is the model specification matrix for the random effects, and E is a vector of
unobservable random errors.

For unbalanced data, the UP model may be expressed as (3) with Y = (Y111, ..., Yieny,»
s Yor1, e Yo )t B = (a1, ..,a0)", b = (bl bh)! where by = (By, ..., By)t ~
N(0,0%1,), by = ((aB)11, ..., (aB)1py, ..., (aB)a1, ..., (@B)a)t ~ N(0,0251,) and E ~
N(0,0°1,.) are independent random vectors, X = [X;,X,], with X; = 1, , X, =

a

P 1,,, where @ denotes the direct sum (Searle, 1982), and Z = [Z;, Z], with Z! =
i=1
b a b
Z%,, Z%,,...,Z,] where Z); = @1, fori = 1,..,a, and Zy = @ P 1,,,. Here 1,
j=1 i=1j=1
a b
is a column vector with all elements equal to 1, n. = > > n;; is the total number of
i=15=1

b
observations and n;. = ) n;; is the total number of observations under level i of factor

j=1
A.

The CP model for unbalanced data may also be written as (3) with 8 = (9, 71, ..., Te—1)",
b = [bl, bi]’, where by = (Dy,...,Dy)! ~ N(0,051;), by = ((tD)11,...,(7D)w,
o i (TD)(a=1)15 - - -, (TD) (a=1y)" ~ N(0,02,(Ts-1 —a 'Jo-1) @ L) and E ~ N(0,0%1,.)
are independent random vectors, X = [X;, Xy, with X; = 1, , X} = [X%,, X&),

a—1
Xgl = 1”1‘-7 X22 = 12—1 & —]_na', Z = [Zl, ZQ], with Zﬁ = [Ztll, Zt12,...,zt1a],
i=1
b a—1 b b
Zy, = D1, Zy = (2, L), Zny = D D 1., and Zp, = 1;,_, @ (B —1,,,)-
=1 i=1 j=1 j=1

J
In both cases it follows that Y ~ N(X3,ZVZ' + ¢°1,, ) where V is a block diagonal

matrix. More specifically, for the UP model,

2
V= l"%lb UZSIQJ and ZVZ' = 027, Z + 02,77}
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whereas, for the C'P model

V — O‘QDIb 0
0 0—2D(Ia71 — a_lJa,l) X Ib

T

and

ZVZt = O'%ZlZ§ + O—EDZQ(Iafl - a_l']afl) & Ibzg

Using the notation of Kshirsagar (1983) and assuming that n;; > 0, the type III sum

of squares due to the random factor B is
b —
SSB=Y W;(L;- L),
j=1

!/ — a ! a nl] = b ! ’ b !
with W, = D miy Ly = 32 Vi fmigs Yigo = 3 Vi and L' = S WLG/ 30 W
1= 1= = Jj= 7=
In matrix notation, it can be expressed as the quadratic form SSB = Y'MpY, where

Mp = T;A'T! with T = (T%,|---|T%,),

T, - 1fbb—1> ® ”ﬁflnn
Djzz — 145 Loy
a b a
and A =Y n;;'"J, 1+ PO nz’jl)
i=1 j=2 i=1
On the other hand, the error sum of squares may be expressed as SSE = YIMpY,

with Mg =1, — ToGTS, G = (T4T,) ™, and

b b
1, 1, O 0 & 1., P 1y, 0 0
Jj=1 Jj=1
b b
1, 0 1, 0 & 1y, 0 b 1n,, 0
T, = j=1 j=1
b b
1,. O o --- 1, & 1., 0 0 o P 1,
Jj=1 Jj=1

Also, under the null hypothesis, Hy : 0% = 0, it follows that the covariance matrix of

Y reduces to V = 0‘72_DV1 + 02V,, where



b b b
(CL - 1) 691']711]' - 691(1”11 1223-) T @( ni; naj)
= .]:

<.
Il
—

(1) = SL1,) - <a—1>éiJnaj

Jj=1 Jj=

@@

,_.
<.
Il

and Vo =1, .

To prove that both quadratic forms have chi-squared distributions multiplied by con-
stants, it is enough to show that (02)"'MpV(Y) and (0?)"'MgV(Y) are idempotent.
In this direction, observe that T{V; = 0 and accordingly, MpV; = 0, so that

(*)"MpV(Y) = Mgl, = M3,

with Mp being idempotent because T:T; = A. On the other hand, as the columns of
V; are linear combinations of the columns of Ty, it follows that ToGTLV; = V; and
therefore, MgV, = 0. Then we may conclude that

(O'Q)ilMEV(Y) - MEITL = ME7

which is an idempotent matrix. Consequently, it follows that SSB/c? and SSE/o? have
chi-squared distributions under the CP model, when ¢% = 0.

In addition, noting that MgV (Y)Mp = 0?MgMp and that the columns of T; are
linear combinations of the columns of Ty, we have 0c?MgMp = [I,,. — ToGT,| T, AT} =
0 which implies the independence between SSB/o? and SSE/c? when % = 0. Letting
MSB = SSB/rank(Mp) and MSE = SSE/rank(Mg) and noting that rank(Mp) =
b — 1 and that rank(Mpg) = n.. — ab, we conclude that

F=MSB/MSE ~ Fi-1,(n..—ab)] (4)

where Fj, , denotes the F distribution with ¢ degrees of freedom in the numerator and p

degrees of freedom in the denominator.



3 Tests based on Ofversten transformations

The basic idea behind the technique proposed by Ofversten (1993) to test for null vari-
ance components is to consider Householder orthogonal transformations of the data that
generate independent quadratic forms that allow us to construct exact F tests even for un-
balanced data. Ofversten (1993) considered models of the form (3), with b = [b%, ..., bi]’
with the additional requirement that the variance of b; is 0?1, and Z = [Zy, ..., Z;] is
such that each row of Z; has a single element equal to one and the others equal to zero.

Under the UP model, the specification matrix for the random effects b is partitioned
as Z = |2y, Zs], where Z; corresponds to the random factor B (b;), and Zs corresponds
to the random interaction AB (bs). Since Z; = Zy(1, ® 1)), the vector space generated
by the columns of Z; is a subspace of the vector space generated by the columns of Z,.
Consequently the random effects by are nested within the random effects by and thus
we may use the methodology developed in Ofversten (1993, Section 4) to obtain exact
F tests for the hypotheses 025 = 0 and 0% = 0. As a matter of fact, the test obtained
using Ofversten “s methodology does not coincide with M SA/MSAB, due to the latter
does not have an exact F' distribution for unbalanced data.

Under the CP model, the assumptions required in Ofversten (1993) do not hold, since
the random effects in by are not independent and Z, has rows with elements different

from 1 or 0. However, note that [X, Z;, Zs] is a matrix of dimension (n.. X (ab+a)) with
rank(X) = a, rank[X, Zi] =a+ (b—1)
and

rank[X, Zi, Zo)=a+ (b—1)+ (a—1)(b—1),

since n;; > 0 for ¢« = 1,...,a and 7 = 1,...,b. Therefore, there exists an orthogonal

(n.. X n..) matrix C, such that

Rll R12 R13
0 Ry R

o z- | § R R
0 0 0



with Ry1, Ros e Raj respectively denoting a x a, (b—1) xband (a—1)(b—1) x (a—1)b full
row rank upper triangular matrices and R, Ri3 and Rsy3 being conformable matrices.
Such a C matrix may be constructed from successive Householder transformations applied
to [X, Zi, Zs] (see Rao and Mitra (1971, Sec. 11.5.2) and the Appendix for details).

Pre-multiplication by C, transforms model (3) into

ty Ri1 Rz Ry

B8
| t2| | 0 Ra Ry
CY = w1~ 0o o0 R El + CE,
ty 0O 0 O 2

where t1, to, t3 and t4 are column vectors of dimensions a, b—1, (a—1)(b—1) and n.. —ab

respectively. Then,

ts ~nNlo UEDRgg[(Ia_l — (Z_lJa_l) (%9 Ib]Rgg) + U2I(a,1)(b,1) 0
t4 ’ 0 O'QInufab

and we can test Hy : 02, = 0 using

e tits/(a —1)(b—1) (5)
tity/(n. —ab)

which follows an exact F distribution with (a —1)(b — 1) and n.. — ab degrees of freedom

under Hy.

Some additional steps are required to obtain the exact F' test for 0% = 0. First, note

that both (3) and ZVZ! are not affected by changing the positions of Z; and Z or of by

and by; then rewrite (3) as

Y =[XZyZ]| by | +E. (6)

Now observe that

rank(X) =a, rank(X|Zs] =a+ (a—1)(b—1),
and
rank(X | Zs | Zi]=a+ (a—1)(b—1)+ (b—1)

8



so we may follow the same lines of the argument used to construct a test for o2, = 0.

More specifically, there exists an orthogonal matrix C* such that

1 Riy Ri;

. 0 5 RA
cxzz=| § R

0 0 0

where R}, R}, and Rj; are respectively, a x a, (a —1)(b—1) X (a —1)band (b—1) x b
full row rank upper triangular matrices and R7j,, Rj; and R3, are conformable matrices.

Pre-multiplication by C* transforms model (6) into

] [Ri Ri Ru] g,
~_ | 8| _| 0 R Ry .
CY = t§ = 0 0 R§3 Ej + C'E
t) 0 0 0

Therefore, we have

{té 1 NN(O’ { RYR + 0Ly 0 D
t4 0 g In..—ab

and thus, we may test the null hypothesis Hy : 0% = 0 using the statistic

t*t * _ 1

F = t3 t3/(b ) 7 (7)
ti't;/(n. — ab)

that follows an exact F' distribution with b — 1 and n.. — ab degrees of freedom under Hy.

This statistic agrees with the statistic (4) obtained from ANOV A tables using Type III

sums of squares.

To illustrate the results, we consider an study conducted to investigate the effects
of spools and of their position (left or right) in a spinning machine on the tension of
synthetic filaments in a textile plant. Differences in tension may affect the dye affinity
of the filaments and thus jeopardize the quality of the fabric produced therewith. The
tension of the filaments from each of 12 spools selected from a very large batch was
observed haphazardly at different instants of the production process on both sides of the
spinning machine. Position is viewed as the fixed factor and spool as the random factor.
The data are displayed in Table 1.

The required model specification matrices are

9



Table 1: Tension of synthetic filaments (cN)

Position Spool (B)
(4) 1 2 3 4 5 6 7 8 9 10 11 12

Left (1) 122 173 14.7 148 155 153 16.1 16.1 150 154 153 15.5
121 176 157 14.v 154 154 16,7 160 14.8 153 152 15.9
12.0 144 155 151 16.2 16.0 149 153 152 15.3
11.8 14.6 16.5 16.1 14.8 15.0

Right (2) 17.7 184 180 17.6 19.0 19.7 179 19.1 20.7 19.6 184 20.6
176 184 19.7 175 189 19.6 18.0 189 204 204 184 20.0

17.8 18.5 189 189 180 19.1 18.8 184 20.1
17.8 19.5 18.2 23.0 184
12 12
1 1 t @ 1711]' @ 1711.7‘
X=|.* 3 z,=|" and Zo= | i
1y —133 1 1
@ naj @ T tngj
Jj=1 J=1

An application of the orthogonal transformation defined by C to the data Y generates

the following vectors required to construct the statistic (5) used to test Hy : 02, =0

t3

and

with
ta
tao
ta3
tyy
tus

=[-289 —2.67 0.19 096 043 —046 -3.36 1.93 —1.34 —1.48 1.34]

ty = [ tfﬂ tfm tf;:s tfm tfw ]t

= [-0.03 —-0.22 —-0.12 -0.12 0.08 0.08 —-0.12 0.08 -0.11 —0.41 —0.98]*
= [-0.18 -1.78 242 -0.10 -0.10 -0.10 —0.10 0.25 —0.35 —0.25]".

= [-0.08 0.02 0.07 -0.13 -0.03 -0.13 0.23 0.13 0.13 —0.17 0.12]¢
= [ 0.02 0.02 0.06 0.46 -0.14 -0.01 -0.11 0.09 0.09 0.14 0.14]*
= [-0.62 1.08 —-0.12 0.19 0.09 0.44 0.34 0.34 0.17 0.07 —0.63]*

]

Similarly, an application of the orthogonal transformation C* to the data Y yields the

vectors required to construct the statistics (7) proposed to test Hy : 0% = 0, namely

t; =

and

[ —6.56 —1.23 —0.74 —2.98 —0.62 —0.35 0.91 0.05 —0.39 —1.17 1.94 ]

ty=[th i tip t i ]

10



with

ti, = [0.09 019 003 -017 —0.07 -0.17 012 002 002 —028  0.10)
th, = [0.00 000 005 045 —0.15 —0.06 —0.16 0.04 004 —0.16 —0.16]'
ti, = [-0.87 083 —037 —0.11 —021 —0.33 —043 —043 0.36 0.26 —0.44]"
t;, = [016 —0.05 005 005 025 025 005 025 031 0.01 —0.85]t
t;, = [-0.05 —1.65 255 0.06 0.06 0.06 0.06 045 —0.15 —0.05]".

The results suggest that both the Spool effect [F,,s = (60.6/11)/(13.6/54) = 21.9,p <
0.0001] and the Position x Spool interaction [F,,s = (37.6/11)/(13.6/54) = 13.6,p <
0.0001] are highly significant. Under the UP model, the usual test for 04 = 0 does not
reject the null hipothesis [F,,s = (61.7/11)/(38.1/11) = 1.62, p = 0.2187].

4 Power of the exact test

It is well known (see Khuri et al. (1998), for example) that the standard F -tests from
ANOV A tables obtained under mixed models for balanced data are uniformly most pow-
erful unbiased (UM PU), uniformly most powerful invariant (UM PI) and uniformly most
powerful invariant unbiased (UM PIU). Unfortunately, this is not always true for unbal-
anced data. In such cases, although we cannot obtain optimum tests, we can use the
results of Ofversten (1993) to set lower bounds for the power of the tests derived in
Section 3.

Using the same arguments as in Lemma 6 of Ofversten (1993), we obtain the following

lower bound for the power of the test statistic (5):

c
I — Fla—1)(b-1)n..—at] ((5( ) ) (8)

o7p/o?) +1
Here, ¢ is the minimum eigenvalue of Ra3[(I,-1 — a™*J, 1) @ I;]R%; and c is the critical
value corresponding to a test of size a, ie., @ = 1 — Fq_1)p—1),n.—ap(c). Details are
presented in the Appendix. For the statistic (7), the lower bound is computed similarly

and is given by

Cc
1 - F[(b—l),n.‘—ab] (5*(0%/0_2) T 1> ) (9)

with §* denoting the minimum eigenvalue of R;R%.
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To evaluate the loss in the power of the statistic (7) for testing 0% = 0 with unbalanced
data, we consider a limited simulation study. The data are generated according to a
factorial design with a fixed factor A with 2 levels, a random factor B with 3 levels
and n;; replicates under each combination of level ¢ of factor A and level j of factor B.

Following Khuri (1987), we use

1
¢= 14+ x2/n.’
with x? = Y0, Z?Zl(nzj —n.)?/n. and n.. = n./ab as a measure of the degree of
imbalance. It is easy to see that 0 < ¢ < 1 and that the upper limit is attained if and
only if the data is balanced. Large values of y2, and hence small values of ¢ correspond
to a high degree of imbalance. In Table 2 we show the number of observations under
each combination of the levels of factors A and B for different patterns of imbalance, i.e.

different levels of ¢.

Table 2: Number of replicates under level i of factor A and level j of factor B considered
in the simulation

Number of observations n..= 18
¢ | nu | me | nis | nor | noo | nos
1 3 3 3 3 3 3
0,96 | 3 3 4 2 3 3
0,75 | 5 4 5 1 1 2
0,51 ] 1 1 8 6 1 1
0,31 | 1 1 1 1 1 13

Number of observations n..= 36
1 6 6 6 6 6 6
0,93 | 4 8 4 6 6 8
0,77 | 1 9 2 7 8 9
0,48 | 1 10 2 1 4 18
0,32 | 1 1 25 7 1 1

We replicate the design detailed in Table 2 using the C'P model to generate 1.000
samples under each combination of the following values for the parameters o2, 0%, o2,

and n.. :

12



e 02=1,02,=4o0r12 and 0% =0,1,4,9 or 16

e n. — 18 or 36.

The results of the simulation are summarized in Tables 3 and 4. Within parentheses,
we show the lower limits for the power of the test under each pattern of imbalance and
different levels of ¢%. The first column corresponds to balanced data (¢ = 1). Since the
F' test under this condition is optimum, this is where we achieve the highest power. In
addition to that, for 0% > 1 and unbalanced data (¢ < 1) we also observe that the power
is not much less than the power of the exact test traditionally used for balanced data

under similar conditions.

Table 3: Observed power for the exact F test of Hy : 0% = 0, when n.. = 18

Imbalance Measure
2 _
0‘72 *_14 p=1|¢=096|¢=075| =051 |¢=0.31
D
0’% =01 0.057 0.049 0.043 0.056 0.068
1| 0.642 0.596 0.498 0.433 0.408
(0.551)* (0.428) (0.344) (0.310)
4 | 0.937 0.938 0.898 0.841 0.816
(0.839) (0.763) (0.694) (0.659)
9 0.995 0.995 0.984 0.974 0.974
(0.923) (0.881) (0.840) (0.818)
16 | 1.00 1.00 1.00 0.997 1.00
(0.955) (0.930) (0.904) (0.890)
2 _
=l 162096 6=075 | 6=051|¢=031
oZp =16
0123 =0 0.055 0.039 0.052 0.037 0.042
1| 0.609 0.597 0.530 0.399 0.411
(0.551) (0.428) (0.344) (0.310)
4 | 0.941 0.946 0.901 0.844 0.824
(0.839) (0.763) (0.694) (0.659)
9 | 0.996 0.995 0.990 0.982 0.969
(0.923) (0.881) (0.840) (0.818)
16 | 1.00 0.999 0.998 0.999 0.997
(0.955) (0.930) (0.904) (0.890)

* Lower limits for the power obtained from expression(8)

The lower limit for the power decreases with the degree of imbalance (¢), since the

minimum eigenvalue of Rg3RY; also decreases with ¢ (see Table 5).
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Table 4: Observed power for the exact F test of Hy : 02 = 0, when n.. = 36

Imbalance Measure
2 _
0‘72 __14 p=1|¢=093| ¢=077| ¢=048 | ¢ =0.32
D —
02 =0] 0.040 | 0.041 0.059 0.055 0.054
1] 0.786 | 0.768 0.669 0.617 0.460
(0.743)* (0.543) (0.418) (0.384)
40983 | 0.983 0.961 0.956 0.880
(0.923) (0.835) (0.756) (0.730)
9| 1.00 | 1.00 0.999 0.999 0.984
(0.964) (0.920) (0.877) (0.862)
16| 1.00 | 1.00 1.00 1.00 1.00
(0.980) (0.954) (0.928) (0.918)
2 _
= 162093 =077 | 6=048 | 6 =032
oZp =16
02 =0] 0052 | 0.055 0.048 0.046 0.060
1] 0793 | 0.784 0.676 0.597 0.471
(0.743) (0.543) (0.418) (0.384)
4 0.991 | 0.988 0.964 0.943 0.890
(0.923) (0.835) (0.756) (0.730)
9| 1.00 | 1.00 0.999 0.997 0.992
(0.964) (0.920) (0.877) (0.862)
16 | 1.00 | 1.00 1.00 1.00 1.00
(0.980) (0.954) (0.928) (0.918)

* Lower limits for the power obtained from expression (8)

As expected, the observed power also decreases with the degree of imbalance (¢);
however, the loss in power (with respect to the balanced data set of the same size) seems
to be acceptable. In fact, the loss of observed power was never greater than 15% for all
values of 0% > 1. In the light of the lower bound computations, the maximum loss cannot
exceed 30%.

Note that for 0% = 1, the variance of D; coincides with the error variance and in such

a case it is reasonable to have little power to test for 0% = 0. To see this, observe that 0%,

Table 5: Minimum eigenvalues of Rs3RY5 for the numbers of replicates shown in Table 2

n.. 18
10) 1 096 0.75 051 0.31 1
6.00 5.21 3.26 2.33 2.00]| 12.00

36
093 077 0.48 0.32
10.05 4.32 2.69 2.35
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is in the denominator of (9). The observed power increases with ¢% and with n.., since
the minimum eigenvalues ¢* in the denominator of (9) increases with n... On the other
hand, we do not observe changes in the power as a function of the values of o2}, and the

lower bound does not depend on that either.

5 Conclusion

We have shown that M SB/MSE (based on Type III sums of squares) still has an exact
F' distribution when ¢% = 0 under unbalanced data situations. We have also shown that
the assumptions in Ofversten (1993) may be relaxed to generate exact F tests for mixed
models with dependent random errors as in the CP model for two-way layouts. For such
a model, the standard hypotheses of no random factor main effect and no interaction may
be easily specified and the corresponding exact tests may be obtained even for unbalanced
data. Such tests do not have optimal properties as their counterparts for balanced data,
but their power lies within reasonable limits for practical applications. From a practical
point of view, Type I1I sums of squares that appear in most commercial statistical software
packages may be considered to test for the nonexistence of the random factor main effects

in the presence of interaction.
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Appendix

Computation of the C and C* matrices

Let (a) or aj denote the k-th component of a vector a. Also, for a vector (matrix)
ac R" (A € R”™), let a¥) (AU)) denote a new vector (matrix) obtained from a (A)
excluding the first j components (rows), i.e., a¥) = (a;11---a,)! € R"7, and AU =
(agj) agj)~~~a,(£)) € Rv7*m Let M = [X, Zi, Zy] be as defined in Section 3. The
algorithm to compute C and C[X, Z;, Zs] is

o Let j=0,i=1,C=1,..

e While MU + 0 and the number of rows of M) is greater than 1 do:

{

— Select i, (i < m) such that, for all i' < i,

mg,j) =0 and mgj) #+0,

17



— Construct H for mgj), such that Hml(-j) = (),0,---,0)", setting H=1—hh’
with
A= —((m),/|(m)))y/ (m”)'my

i = %1/21 m{"),/2)
)/(2h1 ) for k=2,....,n.—j.

0 H
Assign j + 1 to j,

— Assign ( L 0 )Cto C,

Assign CM to M.

}

o End.

The resulting C and M = C[X, Z;, Z,| are the required matrices. The algorithm to
compute C* and M = C*[X, Z,, Z] follows the same steps.

Lower bound for the power of the exact F -test

Since Rz is a (b—1) x b full row rank matrix, it follows that Ras[(I,_1 —a 1T, 1) QI |RY; is
a (b—1)x (b—1) symmetric, positive definite matrix. Therefore there exists an orthogonal

matrix P such that
PRys[(Ii—1 —a 'Jo1) @ LIREPY = A,

where A is a diagonal matrix with the eigenvalues of Ry3[(I,_1 —a™'J,_ 1) @ I;]R%; along
the main diagonal. Letting  be the minimum eigenvalue, we may follow the proof of
Lemma 6 in Ofversten (1993) to obtain the lower bound for the power of (5) as a test
statistic for the hypothesis 02, = 0. A similar argument may be employed for the

hypothesis 0%, = 0 if we use the statistic (7).

Résumé

Dans le contexte des modeles avec un facteur fixé et un facteur aléatoire qui generent la

bien-connue controverse de modeles mixtes, nous considérons des testes F pour 'hypothese
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que, en présence de l'intéraction, I'effet du facteur aléatoire est nul. Nous montrons que,
dans le modele & parametres restringés (CP ), MSB/MSE (employant la notation usuelle
de ANOVA) suit une distribution exacte F quand I’hypothese nulle est vraie, méme dans
des situations avec des données non-équilibrées. Par addition, nous obtenons un test exact
F pour ce qui est en genéral (et par erreur) consideré une hypothese equivalente dans
le modele & parametres non-restringés (UP ). Dans le cas des données non-équilibrées,
la statistique de test proposée ne coincide pas avec MSB/MSAB, qui est la statistique
usuellement recommendée. Nous calculons la puissanece du test exact sous différents
padrons de deséquilibre et nous montrons que méme si la perte de puissance augmente

avec le degré de deséquilibre, elle se mantient acceptable du point de vue practique.
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