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Abstract

We consider exact F tests for the hypothesis of null random factor effect in the
presence of interaction under the two factor mixed models involved in the mixed
models controversy. We show that under the constrained parameter (CP) model,
even in unbalanced data situations, MSB/MSE (in the usual ANOV A notation)
follows an exact F distribution when the null hypothesis holds. We also obtain an
exact F test for what is generally (and erroneously) assumed to be an equivalent
hypothesis under the unconstrained parameter (UP) model. For unbalanced data,
such the corresponding test statistic does not coincide with MSB/MSAB (the test
statistic advocated for balanced data cases). We compute the power of the exact
test under different imbalance patterns and show that although the loss of power
increases with the degree of imbalance, it still remains reasonable from a practical
point of view.

Key words: Exact test, Householder orthogonal transformation, mixed model, random

effect, variance components.

1 Introduction

Mixed models are mainly considered for the analysis of observational studies, although

they may also be employed under some experimental designs as indicated in Hinkelmann

and Kempthorne (1994, Sec. 9.7.5), for example. The so-called mixed model controversy

arises in situations where the data can be described by means of a two-way classification

with a fixed factor A, with a levels, a random factor B, with b levels and r replicates.

In this context, two mixed models have been commonly employed. The unconstrained

parameters (UP) model is
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Yijk = µ + αi + Bj + (αB)ij + Eijk, (1)

for i = 1, ..., a, j = 1, .., b and k = 1, ..., r, with (B1, ..., Bb)
t ∼ N(0, σ2

BIb), ((αB)11, ...,

(αB)ab)
t ∼ N(0, σ2

αBIab), (E111, ..., E1br, , ..., Ea11, ..., Eabr)
t ∼ N(0, σ2Iabr) representing

independent random vectors and In denoting an n×n identity matrix. The second model

is

Yijk = η + τi + Dj + (τD)ij + Eijk, (2)

for i = 1, ..., a, j = 1, .., b and k = 1, ..., r, with
a∑

i=1

τi = 0, (D1, ..., Db)
t ∼ N(0, σ2

DIb),

((τD)11, ..., (τD)ab)
t ∼ N(0, σ2

τDPa ⊗ Ib) and (E111, ..., E1br, ..., Eabr)
t ∼ N(0, σ2Iabr) re-

presenting independent random vectors, where ⊗ denotes the Kronecker product, Pn =

In−n−1Jn and Jn denotes an n×n matrix with all elements equal to 1. Under model (2),

Cov((τD)ij, (τD)i′j) = −σ2
τD/a for i 6= i′. This setup may be reproduced by assuming

that the Di, (τD)ij and Eijk are independent of each other, that Eijk ∼ N(0, σ2) are inde-

pendent, that Di ∼ N(0, σ2
D), i = 1, ..., a, are independent, and that (τD)ij ∼ N(0, σ2

τD),

i = 1, ..., a, j = 1, .., b with
a∑

i=1

(τD)ij = 0, j = 1, .., b. Because of the restriction on the

(τD)ij, the model is termed constrained parameters (CP) model. Both models have been

considered by many authors, like Searle (1971), Milliken and Johnson (1984), SAS (1990),

Montgomery (1997), Neter et al. (1996), Voss (1999) and Lencina et al. (2005).

The controversy relates to the different statistics obtained under the two models for

testing what presumably is the hypothesis of nonexistence of the random factor main ef-

fects in the presence of interaction. The major problem is that one may obtain conflicting

results. More specifically, under the UP model, H0 : σ2
B = 0 is interpreted as the hypoth-

esis of nonexistence of the random factor main effects and MSB/MSAB (in the usual

ANOVA notation) is the appropriate test statistic; under the CP model, H0 : σ2
D = 0

is interpreted similarly and the standard test rejects H0 if MSB/MSE is sufficiently

large. Voss (1999) and Lencina et al. (2005), using different arguments, conclude that

only MSB/MSE is suitable to test the hypothesis of interest, i.e., of the nonexistence

of the random factor main effects in the presence of interaction. In fact, Hocking (1973)

and Lencina et al. (2005) argue that the problem is not to choose what model to use
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but how to express the hypothesis in terms of the model parameters. The latter do not

argue against the UP model but do argue against using H0 : σ2
B = 0 as the hypothesis of

nonexistence of the random factor main effects in the presence of the interaction.

Many authors, like Hinkelmann (2000) and Wolfinger and Stroup (2000) mention that

the UP model is being used more extensively because of the availability of commercial

software for analysis using it. In particular, they argue that it may be employed for

unbalanced data, i.e. (1) and (2) with k = 1, ..., nij, where nij > 0, i = 1, ..., a, j =

1, ..., b is the number of observations under level i of factor A and level j of factor B

and recommend its use along with likelihood-based inferential procedures. The picture

for unbalanced data, however, is not as clear as suggested by these authors. Although it

is true that UP model based software, like Proc Mixed in SAS, are useful tools for the

analysis of unbalanced mixed models, we must keep in mind that usually they do not

provide exact tests for null variance components under such conditions. The available

Wald and likelihood ratio tests are only approximations, since they rely on asypmtotic

arguments. Moreover, since under the null hypothesis, the parameter lies in the boundary

of the parametric space, such large sample tests do not follow chi-squared distributions as

indicated in Stram and Lee (1994) and more recently in Crainiceanu and Ruppert (2004).

The question addressed in this paper is whether we can obtain exact tests for the relevant

hypotheses under the models involved in the controversy.

In Section 2 we introduce the general linear mixed model and specify it for the UP

and the CP models; then we show that under the CP model, MSB/MSE obtained from

the ANOV A table has an exact F distribution when the hypothesis H0 : σ2
D = 0 holds,

even in unbalanced data cases. In Section 3 we consider the transformation proposed by

Öfversten (1993) to obtain exact F tests for the hypotheses H0 : σ2
B = 0, under the UP

model and H0 : σ2
D = 0, under the CP model. This is in line with Lencina et al. (2005),

who observe that the test statistics coincide with those of the ANOVA table either for

balanced or unbalanced data under the CP model, but not under the UP model. In Section

4, we consider a simulation study to evaluate the power of the test for H0 : σ2
D = 0 under

different unbalanced data patterns and compare the simulated power with that obtained

under balanced situations; we also obtain a lower bound to the power of the tests. We

summarize the results in Section 5.
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2 The general linear mixed model specification

The general linear mixed model may be written as

Y = Xβ + Zb + E, (3)

where Y is the observed vector of responses, β is a vector of unknown fixed effects, b is

a vector of unobservable random effects, X is the model specification matrix for the fixed

effects, Z is the model specification matrix for the random effects, and E is a vector of

unobservable random errors.

For unbalanced data, the UP model may be expressed as (3) with Y = (Y111, ..., Y1bn1b
,

..., Ya11, ..., Yabnab
)t , β = (µ, α1, ..., αa)

t, b = (bt
1 bt

2)
t where b1 = (B1, ..., Bb)

t ∼
N(0, σ2

BIb), b2 = ((αB)11, ..., (αB)1b, ..., (αB)a1, ..., (αB)ab)
t ∼ N(0, σ2

αBIab) and E ∼
N(0, σ2In··) are independent random vectors, X = [X1,X2], with X1 = 1n·· , X2 =
a⊕

i=1

1ni· , where
⊕

denotes the direct sum (Searle, 1982), and Z = [Z1, Z2], with Zt
1 =

[Zt
11, Zt

12, . . . ,Z
t
1a] where Z1i =

b⊕
j=1

1nij
for i = 1, ..., a, and Z2 =

a⊕
i=1

b⊕
j=1

1nij
. Here 1n··

is a column vector with all elements equal to 1, n·· =
a∑

i=1

b∑
j=1

nij is the total number of

observations and ni· =
b∑

j=1

nij is the total number of observations under level i of factor

A.

The CP model for unbalanced data may also be written as (3) with β = (η, τ1, . . . , τa−1)
t,

b = [bt
1, bt

2]
t, where b1 = (D1, . . . , Db)

t ∼ N(0, σ2
DIb), b2 = ((τD)11, . . . , (τD)1b,

. . . , (τD)(a−1)1, . . . , (τD)(a−1)b)
t ∼ N(0, σ2

τD(Ia−1 − a−1Ja−1) ⊗ Ib) and E ∼ N(0, σ2In··)

are independent random vectors, X = [X1, X2], with X1 = 1n·· , Xt
2 = [Xt

21, Xt
22],

X21 =
a−1⊕
i=1

1ni· , X22 = 1t
a−1 ⊗ −1na· , Z = [Z1, Z2], with Zt

1 = [Zt
11, Zt

12, . . . ,Z
t
1a],

Z1i =
b⊕

j=1

1nij
, Zt

2 = [Zt
21, Zt

22], Z21 =
a−1⊕
i=1

b⊕
j=1

1nij
and Z22 = 1t

a−1 ⊗ (
b⊕

j=1

−1naj
).

In both cases it follows that Y ∼ N(Xβ,ZVZt + σ2In··) where V is a block diagonal

matrix. More specifically, for the UP model,

V =

[
σ2

BIb 0
0 σ2

αBIab

]
and ZVZt = σ2

BZ1Z
t
1 + σ2

αBZ2Z
t
2
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whereas, for the CP model

V =

[
σ2

DIb 0
0 σ2

τD(Ia−1 − a−1Ja−1)⊗ Ib

]
and

ZVZt = σ2
DZ1Z

t
1 + σ2

τDZ2(Ia−1 − a−1Ja−1)⊗ IbZ
t
2.

Using the notation of Kshirsagar (1983) and assuming that nij > 0, the type III sum

of squares due to the random factor B is

SSB =
b∑

j=1

W
′

j (L
′

j − L̄
′
)2,

with W
′
j

−1
=

a∑
i=1

1/nij, L
′
j =

a∑
i=1

Yij·/nij, Yij· =
nij∑
k=1

Yijk and L̄
′

=
b∑

j=1

W
′
jL

′
j/

b∑
j∗=1

W
′
j∗ .

In matrix notation, it can be expressed as the quadratic form SSB = YtMBY, where

MB = T1A
−1Tt

1 with Tt
1 = (Tt

11| · · · |Tt
1a),

T1i =

[
1t

(b−1) ⊗ n−1
i1 1ni1

⊕b
j=2 − n−1

ij 1nij

]
,

and A =
a∑

i=1

n−1
i1 Jb−1 +

b⊕
j=2

(
a∑

i=1

n−1
ij ).

On the other hand, the error sum of squares may be expressed as SSE = YtMEY,

with ME = In·· −T2GTt
2, G = (Tt

2T2)
−, and

T2 =



1n1· 1n1· 0 · · · 0
b⊕

j=1

1n1j

b⊕
j=1

1n1j
0 · · · 0

1n2· 0 1n2· · · · 0
b⊕

j=1

1n2j
0

b⊕
j=1

1n2j
· · · 0

...
...

...
. . .

...
...

...
...

. . .
...

1na· 0 0 · · · 1na·

b⊕
j=1

1naj
0 0 · · ·

b⊕
j=1

1naj


.

Also, under the null hypothesis, H0 : σ2
D = 0, it follows that the covariance matrix of

Y reduces to V = σ2
τD

V1 + σ2V2, where
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V1 = a−1



(a− 1)
b⊕

j=1

Jn1j
−

b⊕
j=1

(1n1j
1t

n2j
) · · · −

b⊕
j=1

(1n1j
1t

naj
)

−
b⊕

j=1

(1n2j
1t

n1j
) (a− 1)

b⊕
j=1

Jn2j
· · · −

b⊕
j=1

(1n2j
1t

naj
)

...
...

. . .
...

−
b⊕

j=1

(1naj
1t

n1j
) −

b⊕
j=1

(1naj
1t

n2j
) · · · (a− 1)

b⊕
j=1

Jnaj


and V2 = In·· .

To prove that both quadratic forms have chi-squared distributions multiplied by con-

stants, it is enough to show that (σ2)−1MBV(Y) and (σ2)−1MEV(Y) are idempotent.

In this direction, observe that Tt
1V1 = 0 and accordingly, MBV1 = 0, so that

(σ2)−1MBV(Y) = MBIn·· = MB,

with MB being idempotent because Tt
1T1 = A. On the other hand, as the columns of

V1 are linear combinations of the columns of T2, it follows that T2GTt
2V1 = V1 and

therefore, MEV1 = 0. Then we may conclude that

(σ2)−1MEV(Y) = MEIn·· = ME,

which is an idempotent matrix. Consequently, it follows that SSB/σ2 and SSE/σ2 have

chi-squared distributions under the CP model, when σ2
D = 0.

In addition, noting that MEV(Y)MB = σ2MEMB and that the columns of T1 are

linear combinations of the columns of T2, we have σ2MEMB = [In··−T2GTt
2]T1A

−1Tt
1 =

0 which implies the independence between SSB/σ2 and SSE/σ2 when σ2
D = 0. Letting

MSB = SSB/rank(MB) and MSE = SSE/rank(ME) and noting that rank(MB) =

b− 1 and that rank(ME) = n·· − ab, we conclude that

F = MSB/MSE ∼ F[(b−1),(n··−ab)] (4)

where F[q,p] denotes the F distribution with q degrees of freedom in the numerator and p

degrees of freedom in the denominator.
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3 Tests based on Öfversten transformations

The basic idea behind the technique proposed by Öfversten (1993) to test for null vari-

ance components is to consider Householder orthogonal transformations of the data that

generate independent quadratic forms that allow us to construct exact F tests even for un-

balanced data. Öfversten (1993) considered models of the form (3), with b = [bt
1, . . . ,b

t
k]

t

with the additional requirement that the variance of bi is σ2
i Is and Z = [Z1, . . . ,Zk] is

such that each row of Zi has a single element equal to one and the others equal to zero.

Under the UP model, the specification matrix for the random effects b is partitioned

as Z = [Z1, Z2], where Z1 corresponds to the random factor B (b1), and Z2 corresponds

to the random interaction AB (b2). Since Z1 = Z2(1a ⊗ Ib), the vector space generated

by the columns of Z1 is a subspace of the vector space generated by the columns of Z2.

Consequently the random effects b1 are nested within the random effects b2 and thus

we may use the methodology developed in Öfversten (1993, Section 4) to obtain exact

F tests for the hypotheses σ2
αB = 0 and σ2

B = 0. As a matter of fact, the test obtained

using Öfversten´s methodology does not coincide with MSA/MSAB, due to the latter

does not have an exact F distribution for unbalanced data.

Under the CP model, the assumptions required in Öfversten (1993) do not hold, since

the random effects in b2 are not independent and Z2 has rows with elements different

from 1 or 0. However, note that [X, Z1, Z2] is a matrix of dimension (n··× (ab+a)) with

rank(X) = a, rank[X, Z1] = a + (b− 1)

and

rank[X, Z1, Z2] = a + (b− 1) + (a− 1)(b− 1),

since nij > 0 for i = 1, . . . , a and j = 1, . . . , b. Therefore, there exists an orthogonal

(n·· × n··) matrix C, such that

C[X, Z1, Z2] =


R11 R12 R13

0 R22 R23

0 0 R33

0 0 0

 ,

7



with R11, R22 e R33 respectively denoting a×a, (b−1)×b and (a−1)(b−1)×(a−1)b full

row rank upper triangular matrices and R12, R13 and R23 being conformable matrices.

Such a C matrix may be constructed from successive Householder transformations applied

to [X, Z1, Z2] (see Rao and Mitra (1971, Sec. 11.5.2) and the Appendix for details).

Pre-multiplication by C, transforms model (3) into

CY =


t1

t2

t3

t4

 =


R11 R12 R13

0 R22 R23

0 0 R33

0 0 0


 β

b1

b2

 + CE,

where t1, t2, t3 and t4 are column vectors of dimensions a, b−1, (a−1)(b−1) and n··−ab

respectively. Then,

[
t3

t4

]
∼ N

(
0,

[
σ2

τDR33[(Ia−1 − a−1Ja−1)⊗ Ib]R
t
33 + σ2I(a−1)(b−1) 0

0 σ2In··−ab

])
and we can test H0 : σ2

τD = 0 using

F =
tt
3t3/(a− 1)(b− 1)

tt
4t4/(n·· − ab)

, (5)

which follows an exact F distribution with (a− 1)(b− 1) and n·· − ab degrees of freedom

under H0.

Some additional steps are required to obtain the exact F test for σ2
D = 0. First, note

that both (3) and ZVZt are not affected by changing the positions of Z1 and Z2 or of b1

and b2; then rewrite (3) as

Y = [X Z2 Z1]

 β
b2

b1

 + E. (6)

Now observe that

rank(X) = a, rank[X | Z2] = a + (a− 1)(b− 1),

and

rank[X | Z2 | Z1] = a + (a− 1)(b− 1) + (b− 1)
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so we may follow the same lines of the argument used to construct a test for σ2
τD = 0.

More specifically, there exists an orthogonal matrix C∗ such that

C∗[X Z2 Z1] =


R∗

11 R∗
12 R∗

13

0 R∗
22 R∗

23

0 0 R∗
33

0 0 0

 ,

where R∗
11, R∗

22 and R∗
33 are respectively, a× a, (a− 1)(b− 1)× (a− 1)b and (b− 1)× b

full row rank upper triangular matrices and R∗
12, R∗

13 and R∗
23 are conformable matrices.

Pre-multiplication by C∗ transforms model (6) into

C∗Y =


t∗1
t∗2
t∗3
t∗4

 =


R∗

11 R∗
12 R∗

13

0 R∗
22 R∗

23

0 0 R∗
33

0 0 0


 β

b2

b1

 + C∗E.

Therefore, we have

[
t∗3
t∗4

]
∼ N

(
0,

[
σ2

DR∗
33R

∗t
33 + σ2Ib−1 0
0 σ2In··−ab

])
,

and thus, we may test the null hypothesis H0 : σ2
D = 0 using the statistic

F =
t∗t3 t∗3/(b− 1)

t∗t4 t∗4/(n·· − ab)
, (7)

that follows an exact F distribution with b− 1 and n·· − ab degrees of freedom under H0.

This statistic agrees with the statistic (4) obtained from ANOV A tables using Type III

sums of squares.

To illustrate the results, we consider an study conducted to investigate the effects

of spools and of their position (left or right) in a spinning machine on the tension of

synthetic filaments in a textile plant. Differences in tension may affect the dye affinity

of the filaments and thus jeopardize the quality of the fabric produced therewith. The

tension of the filaments from each of 12 spools selected from a very large batch was

observed haphazardly at different instants of the production process on both sides of the

spinning machine. Position is viewed as the fixed factor and spool as the random factor.

The data are displayed in Table 1.

The required model specification matrices are
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Table 1: Tension of synthetic filaments (cN)

Position Spool (B)
(A) 1 2 3 4 5 6 7 8 9 10 11 12

Left (1) 12.2 17.3 14.7 14.8 15.5 15.3 16.1 16.1 15.0 15.4 15.3 15.5
12.1 17.6 15.7 14.7 15.4 15.4 16.7 16.0 14.8 15.3 15.2 15.9
12.0 14.4 15.5 15.1 16.2 16.0 14.9 15.3 15.2 15.3
11.8 14.6 16.5 16.1 14.8 15.0

Right (2) 17.7 18.4 18.0 17.6 19.0 19.7 17.9 19.1 20.7 19.6 18.4 20.6
17.6 18.4 19.7 17.5 18.9 19.6 18.0 18.9 20.4 20.4 18.4 20.0
17.8 18.5 18.9 18.9 18.0 19.1 18.8 18.4 20.1
17.8 19.5 18.2 23.0 18.4

X =

[
140 138

140 −138

]t

Z1 =


12⊕

j=1

1n1j

12⊕
j=1

1n2j

 and Z2 =


12⊕

j=1

1n1j

12⊕
j=1

−1n2j


An application of the orthogonal transformation defined by C to the data Y generates

the following vectors required to construct the statistic (5) used to test H0 : σ2
τD = 0

t3 = [ −2.89 −2.67 0.19 0.96 0.43 −0.46 −3.36 1.93 −1.34 −1.48 1.34 ]t

and
t4 = [ tt

41 tt
42 tt

43 tt
44 tt

45 ]t

with
t41 = [−0.08 0.02 0.07 −0.13 −0.03 −0.13 0.23 0.13 0.13 −0.17 0.12]t

t42 = [ 0.02 0.02 0.06 0.46 −0.14 −0.01 −0.11 0.09 0.09 0.14 0.14]t

t43 = [−0.62 1.08 −0.12 0.19 0.09 0.44 0.34 0.34 0.17 0.07 −0.63]t

t44 = [−0.03 −0.22 −0.12 −0.12 0.08 0.08 −0.12 0.08 −0.11 −0.41 −0.98]t

t45 = [−0.18 −1.78 2.42 −0.10 −0.10 −0.10 −0.10 0.25 −0.35 −0.25]t.

Similarly, an application of the orthogonal transformation C∗ to the data Y yields the

vectors required to construct the statistics (7) proposed to test H0 : σ2
D = 0, namely

t∗3 = [ −6.56 −1.23 −0.74 −2.98 −0.62 −0.35 0.91 0.05 −0.39 −1.17 1.94 ]t

and
t∗4 = [ t∗t41 t∗t42 t∗t43 t∗t44 t∗t45 ]t
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with
t∗41 = [0.09 0.19 0.03 −0.17 −0.07 −0.17 0.12 0.02 0.02 −0.28 0.10]t

t∗42 = [0.00 0.00 0.05 0.45 −0.15 −0.06 −0.16 0.04 0.04 −0.16 −0.16]t

t∗43 = [−0.87 0.83 −0.37 −0.11 −0.21 −0.33 −0.43 −0.43 0.36 0.26 −0.44]t

t∗44 = [0.16 −0.05 0.05 0.05 0.25 0.25 0.05 0.25 0.31 0.01 −0.85]t

t∗45 = [−0.05 −1.65 2.55 0.06 0.06 0.06 0.06 0.45 −0.15 −0.05]t.

The results suggest that both the Spool effect [Fobs = (60.6/11)/(13.6/54) = 21.9, p <

0.0001] and the Position × Spool interaction [Fobs = (37.6/11)/(13.6/54) = 13.6, p <

0.0001] are highly significant. Under the UP model, the usual test for σ2
B = 0 does not

reject the null hipothesis [Fobs = (61.7/11)/(38.1/11) = 1.62, p = 0.2187].

4 Power of the exact test

It is well known (see Khuri et al. (1998), for example) that the standard F -tests from

ANOV A tables obtained under mixed models for balanced data are uniformly most pow-

erful unbiased (UMPU), uniformly most powerful invariant (UMPI) and uniformly most

powerful invariant unbiased (UMPIU). Unfortunately, this is not always true for unbal-

anced data. In such cases, although we cannot obtain optimum tests, we can use the

results of Öfversten (1993) to set lower bounds for the power of the tests derived in

Section 3.

Using the same arguments as in Lemma 6 of Öfversten (1993), we obtain the following

lower bound for the power of the test statistic (5):

1− F [(a−1)(b−1),n··−ab]

(
c

δ(σ2
τD/σ2) + 1

)
. (8)

Here, δ is the minimum eigenvalue of R33[(Ia−1 − a−1Ja−1) ⊗ Ib]R
t
33 and c is the critical

value corresponding to a test of size α, i.e., α = 1 − F[(a−1)(b−1),n··−ab](c). Details are

presented in the Appendix. For the statistic (7), the lower bound is computed similarly

and is given by

1− F[(b−1),n··−ab]

(
c

δ∗(σ2
D/σ2) + 1

)
, (9)

with δ∗ denoting the minimum eigenvalue of R∗
33R

∗t
33.
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To evaluate the loss in the power of the statistic (7) for testing σ2
D = 0 with unbalanced

data, we consider a limited simulation study. The data are generated according to a

factorial design with a fixed factor A with 2 levels, a random factor B with 3 levels

and nij replicates under each combination of level i of factor A and level j of factor B.

Following Khuri (1987), we use

φ =
1

1 + χ2/n··
,

with χ2 =
∑a

i=1

∑b
j=1(nij − n̄··)

2/n̄·· and n̄·· = n··/ab as a measure of the degree of

imbalance. It is easy to see that 0 < φ ≤ 1 and that the upper limit is attained if and

only if the data is balanced. Large values of χ2, and hence small values of φ correspond

to a high degree of imbalance. In Table 2 we show the number of observations under

each combination of the levels of factors A and B for different patterns of imbalance, i.e.

different levels of φ.

Table 2: Number of replicates under level i of factor A and level j of factor B considered
in the simulation

Number of observations n·· = 18
φ n11 n12 n13 n21 n22 n23

1 3 3 3 3 3 3
0,96 3 3 4 2 3 3
0,75 5 4 5 1 1 2
0,51 1 1 8 6 1 1
0,31 1 1 1 1 1 13

Number of observations n·· = 36
1 6 6 6 6 6 6
0,93 4 8 4 6 6 8
0,77 1 9 2 7 8 9
0,48 1 10 2 1 4 18
0,32 1 1 25 7 1 1

We replicate the design detailed in Table 2 using the CP model to generate 1.000

samples under each combination of the following values for the parameters σ2, σ2
D, σ2

τD

and n·· :
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• σ2 = 1, σ2
τD = 4 or 12 and σ2

D = 0, 1, 4, 9 or 16

• n·· = 18 or 36.

The results of the simulation are summarized in Tables 3 and 4. Within parentheses,

we show the lower limits for the power of the test under each pattern of imbalance and

different levels of σ2
D. The first column corresponds to balanced data (φ = 1). Since the

F test under this condition is optimum, this is where we achieve the highest power. In

addition to that, for σ2
D > 1 and unbalanced data (φ < 1) we also observe that the power

is not much less than the power of the exact test traditionally used for balanced data

under similar conditions.

Table 3: Observed power for the exact F test of H0 : σ2
D = 0, when n·· = 18

Imbalance Measure
σ2 = 1
σ2

τD = 4
φ = 1 φ = 0.96 φ = 0.75 φ = 0.51 φ = 0.31

σ2
D = 0 0.057 0.049 0.043 0.056 0.068

1 0.642 0.596 0.498 0.433 0.408
(0.551)* (0.428) (0.344) (0.310)

4 0.937 0.938 0.898 0.841 0.816
(0.839) (0.763) (0.694) (0.659)

9 0.995 0.995 0.984 0.974 0.974
(0.923) (0.881) (0.840) (0.818)

16 1.00 1.00 1.00 0.997 1.00
(0.955) (0.930) (0.904) (0.890)

σ2 = 1
σ2

τD = 16
φ = 1 φ = 0.96 φ = 0.75 φ = 0.51 φ = 0.31

σ2
D = 0 0.055 0.039 0.052 0.037 0.042

1 0.609 0.597 0.530 0.399 0.411
(0.551) (0.428) (0.344) (0.310)

4 0.941 0.946 0.901 0.844 0.824
(0.839) (0.763) (0.694) (0.659)

9 0.996 0.995 0.990 0.982 0.969
(0.923) (0.881) (0.840) (0.818)

16 1.00 0.999 0.998 0.999 0.997
(0.955) (0.930) (0.904) (0.890)

∗ Lower limits for the power obtained from expression(8)

The lower limit for the power decreases with the degree of imbalance (φ), since the

minimum eigenvalue of R33R
t
33 also decreases with φ (see Table 5).
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Table 4: Observed power for the exact F test of H0 : σ2
D = 0, when n·· = 36

Imbalance Measure
σ2 = 1
σ2

τD = 4
φ = 1 φ = 0.93 φ = 0.77 φ = 0.48 φ = 0.32

σ2
D = 0 0.040 0.041 0.059 0.055 0.054

1 0.786 0.768 0.669 0.617 0.460
(0.743)* (0.543) (0.418) (0.384)

4 0.983 0.983 0.961 0.956 0.880
(0.923) (0.835) (0.756) (0.730)

9 1.00 1.00 0.999 0.999 0.984
(0.964) (0.920) (0.877) (0.862)

16 1.00 1.00 1.00 1.00 1.00
(0.980) (0.954) (0.928) (0.918)

σ2 = 1
σ2

τD = 16
φ = 1 φ = 0.93 φ = 0.77 φ = 0.48 φ = 0.32

σ2
D = 0 0.052 0.055 0.048 0.046 0.060

1 0.793 0.784 0.676 0.597 0.471
(0.743) (0.543) (0.418) (0.384)

4 0.991 0.988 0.964 0.943 0.890
(0.923) (0.835) (0.756) (0.730)

9 1.00 1.00 0.999 0.997 0.992
(0.964) (0.920) (0.877) (0.862)

16 1.00 1.00 1.00 1.00 1.00
(0.980) (0.954) (0.928) (0.918)

∗ Lower limits for the power obtained from expression (8)

As expected, the observed power also decreases with the degree of imbalance (φ);

however, the loss in power (with respect to the balanced data set of the same size) seems

to be acceptable. In fact, the loss of observed power was never greater than 15% for all

values of σ2
D > 1. In the light of the lower bound computations, the maximum loss cannot

exceed 30%.

Note that for σ2
D = 1, the variance of Dj coincides with the error variance and in such

a case it is reasonable to have little power to test for σ2
D = 0. To see this, observe that σ2

D

Table 5: Minimum eigenvalues of R33R
t
33 for the numbers of replicates shown in Table 2

n·· 18 36
φ 1 0.96 0.75 0.51 0.31 1 0.93 0.77 0.48 0.32
δ∗ 6.00 5.21 3.26 2.33 2.00 12.00 10.05 4.32 2.69 2.35
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is in the denominator of (9). The observed power increases with σ2
D and with n··, since

the minimum eigenvalues δ∗ in the denominator of (9) increases with n··. On the other

hand, we do not observe changes in the power as a function of the values of σ2
τD and the

lower bound does not depend on that either.

5 Conclusion

We have shown that MSB/MSE (based on Type III sums of squares) still has an exact

F distribution when σ2
D = 0 under unbalanced data situations. We have also shown that

the assumptions in Öfversten (1993) may be relaxed to generate exact F tests for mixed

models with dependent random errors as in the CP model for two-way layouts. For such

a model, the standard hypotheses of no random factor main effect and no interaction may

be easily specified and the corresponding exact tests may be obtained even for unbalanced

data. Such tests do not have optimal properties as their counterparts for balanced data,

but their power lies within reasonable limits for practical applications. From a practical

point of view, Type III sums of squares that appear in most commercial statistical software

packages may be considered to test for the nonexistence of the random factor main effects

in the presence of interaction.
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Appendix

Computation of the C and C∗ matrices

Let (a)k or ak denote the k-th component of a vector a. Also, for a vector (matrix)

a ∈ Rn (A ∈ Rn×m), let a(j) (A(j)) denote a new vector (matrix) obtained from a (A)

excluding the first j components (rows), i.e., a(j) = (aj+1 · · · an)t ∈ Rn−j, and A(j) =

(a
(j)
1 a

(j)
2 · · · a(j)

m ) ∈ Rn−j×m. Let M = [X, Z1, Z2] be as defined in Section 3. The

algorithm to compute C and C[X, Z1, Z2] is

• Let j = 0, i = 1, C = In·· .

• While M(j) 6= 0 and the number of rows of M(j) is greater than 1 do:

{

– Select i, (i ≤ m) such that, for all i′ < i,

m
(j)
i′ = 0 and m

(j)
i 6= 0,
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– Construct H for m
(j)
i , such that Hm

(j)
i = (λ, 0, · · · , 0)t, setting H = I−hht

with 
λ = −((m

(j)
i )1/|(m(j)

i )1|)
√

(m
(j)
i )tm

(j)
i

h1 =

√
1/2(1− (m

(j)
i )1/λ)

hk = −(m
(j)
i )k/(2h1λ) for k = 2, . . . , n·· − j.

– Assign

(
Ij 0
0 H

)
C to C,

– Assign j + 1 to j,

– Assign CM to M.

}

• End .

The resulting C and M = C[X, Z1, Z2] are the required matrices. The algorithm to

compute C∗ and M = C∗[X, Z2, Z1] follows the same steps.

Lower bound for the power of the exact F -test

Since R33 is a (b−1)×b full row rank matrix, it follows that R33[(Ia−1−a−1Ja−1)⊗Ib]R
t
33 is

a (b−1)×(b−1) symmetric, positive definite matrix. Therefore there exists an orthogonal

matrix P such that

PR33[(Ia−1 − a−1Ja−1)⊗ Ib]R
t
33P

t = ∆,

where ∆ is a diagonal matrix with the eigenvalues of R33[(Ia−1− a−1Ja−1)⊗ Ib]R
t
33 along

the main diagonal. Letting δ be the minimum eigenvalue, we may follow the proof of

Lemma 6 in Öfversten (1993) to obtain the lower bound for the power of (5) as a test

statistic for the hypothesis σ2
τD = 0. A similar argument may be employed for the

hypothesis σ2
D = 0 if we use the statistic (7).

Résumé

Dans le contexte des modèles avec un facteur fixé et un facteur aléatoire qui genèrent la

bien-connue controverse de modèles mixtes, nous considérons des testes F pour l’hypothèse
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que, en présence de l’intéraction, l’effet du facteur aléatoire est nul. Nous montrons que,

dans le modèle à paramètres restringés (CP ), MSB/MSE (employant la notation usuelle

de ANOVA) suit une distribution exacte F quand l’hypothèse nulle est vraie, même dans

des situations avec des données non-équilibrées. Par addition, nous obtenons un test exact

F pour ce qui est en genéral (et par erreur) consideré une hypothèse equivalente dans

le modèle à paramètres non-restringés (UP ). Dans le cas des données non-équilibrées,

la statistique de test proposée ne coincide pas avec MSB/MSAB, qui est la statistique

usuellement recommendée. Nous calculons la puissanece du test exact sous différents

padrons de deséquilibre et nous montrons que même si la perte de puissance augmente

avec le degré de deséquilibre, elle se mantient acceptable du point de vue practique.
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