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In many situations there is interest in parameters (e.g., mean) associated with the response distribution of individual clusters in a finite
clustered population. We develop predictors of such parameters using a two-stage sampling probability model with response error. The
probability model stems directly from finite population sampling without additional assumptions and thus is design-based. The predictors
are closely related to best linear unbiased predictors (BLUP) that arise from common mixed-model methods, as well as to model-based
predictors obtained via super population approaches for survey sampling. The context assumes clusters of equal size and equal size sampling
of units within clusters. Target parameters may correspond to clusters realized in the sample, as well as nonrealized clusters. In either
case, the predictors are linear and unbiased, and minimize the expected mean squared error. They correspond to the sum of predictors of
responses for realized and nonrealized units in the cluster, accounting directly for the second-stage sampling fraction. In contrast, the BLUP
commonly used in mixed models can be interpreted as predicting only the responses of second-stage units not observed for a cluster, not
the cluster mean. The development reveals that two-stage sampling does not give rise to a more general variance structure often assumed
in superpopulation models, even when variances within clusters are heterogeneous. With response error present, we predict target random
variables defined as an expected (or average) response over units in a cluster.

KEY WORDS: Best linear unbiased predictor; Design-based inference; Optimal estimation; Random permutation; Superpopulation;
Two-stage sampling.

1. INTRODUCTION

Prediction of random effects in clustered populations is im-
portant in many biological and environmental applications.
The increased importance has resulted from popularization
of mixed-model methods and software, such as SAS PROC
MIXED (Littell, Milliken, Stroup, and Wolfinger 1996), for
analyzing clustered data, along with the assertion that the
predictors of random effects may have useful interpretation.
Best linear unbiased predictors (BLUPs) based on mixed-model
theory are typically used for realized random effects, that is,
random effects associated with realized units (Goldberger 1962;
Henderson 1984; McLean, Sanders, and Stroup 1991; Robinson
1991; Stanek, Well, and Ockene 1999; McCulloch and Searle
2001). The sample data are typically considered to have been
selected via two-stage sampling from a conceptual infinite pop-
ulation, often vaguely defined but understood to be the limit (as
the size becomes infinite) of a finite population of interest.

In many settings, the underlying study population is clustered
and finite, and response error is present. Our interest is predict-
ing a value that corresponds to the average of the expected unit
response in a cluster (which we call the cluster latent value).
Because the clusters and units will be sampled, the parame-
ter of interest may be viewed as a random variable. We also
discuss prediction of a related random variable defined by the
simple average response of units in a cluster (which we call
the cluster mean). We develop predictors of such random vari-
ables in situations where each cluster is of the same size, equal
size samples of units are selected from each selected cluster,
and a single measure of response is made on selected units.
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For example, defining a physician’s practice as a cluster of pa-
tients (i.e., units), and a single measure of serum cholesterol on
each patient as a response, the average of all the patients’ serum
cholesterol measures in a practice is the cluster mean, whereas
the average of all the patients’ expected (over response error)
serum cholesterol in the practice is the latent value. When there
is no response error, the latent value and the cluster mean coin-
cide.

The approach that we consider closely parallels the predic-
tion-based approach with superpopulation models used in sur-
vey sampling (Scott and Smith 1969; Pfeffermann and Nathan
1981; Bolfarine and Zacks 1992; Valliant, Dorfman, and Royall
2000). The prediction approach bases statistical inference on a
model for a superpopulation. The finite population is defined as
a realization of superpopulation random variables, and the tar-
get is prediction of a linear combination of these variables. The
actual sample design plays no role in the inference. We present
an approach that explicitly develops random variables, similar
to a superpopulation, arising from a two-stage cluster sampling
design with response error. Because this approach is based on
the design, different sources of random variation (e.g., sampling
and response error) can be distinguished. This allows us to dis-
tinguish the latent value of a cluster from the average response
of units in a cluster.

We begin with a brief review of mixed model and superpopu-
lation model results. We next define the basic context and nota-
tion for a response error model in a finite population, along with
random variables arising from two-stage sampling. We then de-
velop the main results for this model. We conclude by compar-
ing alternative predictors, illustrating them in an example, and
discussing more general settings.

1.1 Mixed Models and Superpopulation
Sampling Models

In the mixed-model literature, a simple model for the re-
sponse of the j th second-stage sample unit (SSU), j = 1,
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. . . ,m, in the ith primary sample unit (PSU), i = 1, . . . , n, is
given by

Yij = µ + Bi + Eij , (1)

where µ corresponds to the expected response over SSUs and
PSUs in a conceptual population, Bi is a random effect cor-
responding to the deviation from µ of the average expected
response of SSUs in the ith PSU, and Eij is a random devi-
ation of the expected response of the j th SSU from the aver-
age expected response of the ith PSU. Typically, it is assumed
that Bi ∼ iid N(0, σ 2) and Eij ∼ iid N(0, σ 2

i ) are independent.
Given (1) and the associated assumptions, the joint distribu-
tion of Yij and Bi may be specified. The corresponding like-
lihood, when maximized jointly with respect to the fixed and
random effects, leads to Henderson’s mixed-model equations
(Henderson, Kempthorne, Searle, and von Krosigk 1959).

In model (1), assuming known variances, an estimator of
the fixed effect µ is the weighted least squares estimator, µ̂ =∑n

i=1 wiȲi , where

Ȳi = 1

m

m∑
j=1

Yij , wi = 1/vi∑n
i=1 1/vi

,

and

vi = σ 2 + σ 2
i

m
.

The solution to the mixed-model equations results in the BLUP
of the random effect Bi . Combining the estimator of µ and the
predictor of Bi , the predictor of the latent value of the ith real-
ized PSU, µ + Bi , is

µ̂ + ki(Ȳi − µ̂), (2)

where ki = mσ 2

mσ 2+σ 2
i

.

In practice, the variance parameters are replaced by maxi-
mum likelihood or restricted maximum likelihood estimates.
McCulloch and Searle (2001) and Robinson (1991) have dis-
cussed many other derivations of the BLUP, but none of these
derivations account for the impact of a finite population on the
predictors.

Predictors of linear combinations of responses of elements of
a finite population in a two-stage sampling setting were devel-
oped by Scott and Smith (1969) using a superpopulation model,
according to which a finite population is viewed as the real-
ization of a set of random variables. The superpopulation is
assumed to be nested, with random variables associated with
PSUs and SSUs satisfying E(Yij ) = µ and

cov(Yij , Ykl) =



δ2 + σ 2
i when i = k; j = l

δ2 when i = k; j �= l

0 otherwise.

Apart from the difference in notation (using δ2 in place of σ 2),
the first- and second-moment assumptions for the superpopula-
tion match the mixed model assumptions.

A finite population is viewed as the realization of a set of
NM random variables indexed by i = 1, . . . ,N, j = 1, . . . ,M .
The parameters of interest are linear combinations of values as-
sociated with the elements in the finite population, such as the
average response for a PSU. Such parameters can be defined for

all PSUs in the finite population. Because only a portion of the
PSUs and SSUs are observed, the essential statistical problem
is how to predict, in some optimal way, a linear combination
of responses of the remaining nonobserved SSUs in the finite
population. Predictors are constructed using the joint distribu-
tion assumed for the superpopulation (Royall 1976; Bolfarine
and Zacks 1992; Valliant et al. 2000). This approach to statisti-
cal inference in survey sampling is called model-based, because
inference is based on the model assumed for the superpopula-
tion.

Scott and Smith (1969) presented a Bayesian derivation (as-
suming that the superpopulation is normally distributed), and
a distribution-free derivation [based on minimizing the ex-
pected mean squared error (MSE) of a linear predictor] that re-
sults in the same predictor of the average PSU response given
by

P̂i = m

M
Ȳi +

(
M − m

M

)
[µ̂∗ + k∗

i (Ȳi − µ̂∗)] (3)

with

µ̂∗ =
n∑

i=1

w∗
i Ȳi and k∗

i = mδ2

mδ2 + σ 2
i

,

where

w∗
i = 1/v∗

i∑n
i=1 1/v∗

i

and v∗
i = δ2 + σ 2

i

m

if the PSU is in the sample or P̂i = µ̂∗ if the PSU is not included
in the sample. The predictor (3) has an appealing interpretation
as the weighted sum of two terms: the sample mean for a PSU
in the sample and the predictor of the average of the remaining
SSUs for the PSU. The weighting factors are the proportions
of the observed and nonobserved SSUs. For PSUs not in the
sample, the predictor simplifies to the weighted sample mean.

There is an obvious similarity between (2) and (3). When
m
M

is small enough so that 1 − m
M

∼= 1, the first term in (3) can
be ignored, and the two expressions appear to be identical ex-
cept for different notation for the variance components. In this
setting, one can interpret the BLUP in (2) as a weighted sum of
the average response of the observed SSUs and a predictor of
the average response of the unobserved SSUs for a PSU, where
no weight is given to the mean of the observed SSUs. Such a
predictor may be reasonable if the number of SSUs in the PSU
is so large that the observed SSUs correspond to a negligible
fraction of the total for the PSU.

Scott and Smith’s predictor (3) of the average response for a
PSU in the sample is a weighted average of the mean response
of the sample SSUs and of the predictor of the mean response
of the unobserved SSUs for the PSU. This provides a strong
intuitive appeal to the prediction-based approach as advocated
by Valliant et al. (2000). We borrow the ideas underlying such
an approach to develop predictors of the latent value or mean of
a PSU directly from a finite-population response error model,
using indicator random variables to account for the two-stage
sampling.
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2. THE TWO–STAGE RANDOM PERMUTATION
MODEL FOR A FINITE POPULATION WITH

RESPONSE ERROR

The probability model that we consider arises from two-stage
sampling of a finite population where a simple response error
model is assumed for its units. Sampling is incorporated into the
model using indicator random variables that specify a two-stage
random permutation of clusters and units in the population, and
hence we refer to it as a random permutation model. The model
is similar to the superpopulation models discussed by Rao and
Bellhouse (1978), who also called their model a random per-
mutation model. We first define a response error model for units
in the population and finite-population parameters. We then in-
troduce sampling indicator random variables and define target
random variables. We conclude by summarizing the model and
specifying the first and second moments.

2.1 The Finite-Population Response Error Model
and Parameterizations

Let a finite population be defined by a listing of M units,
indexed by t = 1, . . . ,M, in each of N clusters, indexed by
s = 1, . . . ,N , where the kth response for unit t in cluster s is
given by

Ystk = yst + Wstk. (4)

This is a response error model where yst is a fixed constant
representing the expected response for the unit, and Wstk rep-
resents response error (with zero expected value). We include
the subscript k to help distinguish Ystk in (4) from Yij in (1), al-
though in our context the subscript could be dropped, because
we only consider settings where a single response is made for
each unit, that is, k = 1. The model can be readily expanded to
account for multiple responses per unit.

We denote the response error variance for unit t in cluster s

by σ 2
st , and define the average response error variance as

σ 2
r =

N∑
s=1

M∑
t=1

σ 2
st

NM
. (5)

The mean and variance of the expected response for units in
cluster s are defined as

µs = 1

M

M∑
t=1

yst

and

(
M − 1

M

)
σ 2

s = 1

M

M∑
t=1

(yst − µs)
2 for s = 1, . . . ,N.

The parameter µs is the latent value for cluster s, and σ 2
s is

the survey sampling definition for the variance. We define the
average within-cluster variance as

σ 2
e = 1

N

N∑
s=1

σ 2
s . (6)

Similarly, we define the population mean and the between-
cluster variance as

µ = 1

N

N∑
s=1

µs and

(
N − 1

N

)
σ 2 = 1

N

N∑
s=1

(µs − µ)2.

Finally, we define βs = (µs − µ) as the deviation of the la-
tent value of cluster s from the population mean, and εst =
(yst − µs) as the deviation of the expected response for unit t

in cluster s from the latent value of cluster s. Using these defin-
itions, we represent the expected response for unit t in cluster s

(t = 1, . . . ,M; s = 1, . . . ,N) as

yst = µ + βs + εst . (7)

Model (4) is called a derived model (Hinkelmann and
Kempthorne 1994).

Defining

y = (y′
1 y′

2 · · · y′
N )′ ,

where ys = (ys1 ys2 · · · ysM)′, model (7) can be summa-
rized as

y = Xµ + Zβ + ε, (8)

where

X = 1N ⊗ 1M, (9)

Z = IN ⊗ 1M, (10)

β ′ = ( β1 β2 · · · βN ) , (11)

1a is an a × 1 column vector of 1s, ⊗ denotes the Kronecker
product (Graybill 1983), and ε is defined similarly to y. Each
of the terms in model (8) is a nonstochastic constant. Because
k = 1, we can define W = (Wstk) similarly to y; adding W
to y summarizes the stochastic finite-population response error
model.

2.2 Random Variables and the Two-Stage Random
Permutation Model With Response Error

We define the two-stage random permutation model as an or-
dered list of NM random variables, where both clusters and
units in clusters are independently permuted. Assuming that
each realization of the two-stage permutation is equally likely,
the random variables formally represent two-stage sampling
(Cochran 1977).

For each permutation, we assign a new label, i = 1, . . . ,N ,
to the clusters according to its position in the permuted list. In
a similar manner, we label the positions in the permutation of
units in a cluster by j = 1, . . . ,M . Because any unit in any clus-
ter may occupy position ij , we represent the expected response
(over response error) for the j th SSU in the ith PSU as the ran-
dom variable Yij . For ease of exposition, we refer to the cluster
that will occupy position i in the permutation of clusters as the
ith PSU, and to the unit that will occupy position j in the per-
mutation of units within a cluster as the j th SSU. PSUs and
SSUs are indexed by positions (i and j), whereas clusters and
units are indexed by labels (s and t) in the finite population.

To relate yst to Yij , we use sampling indicator random vari-
ables, Uis , which take a value of 1 when the ith PSU is
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cluster s and a value of 0 otherwise, and indicator random vari-
ables U

(s)
j t that take a value of 1 when the j th SSU in cluster s

is unit t and 0 otherwise. As a consequence, the random vari-
able that links the units and clusters to the SSUs and PSUs in a
permutation is given by

Yij =
N∑

s=1

M∑
t=1

UisU
(s)
j t yst . (12)

Letting U(s) = (U(s)
1 U(s)

2 · · · U(s)
M ) denote the M × M

matrix with columns

U(s)
t = (

U
(s)
1t U

(s)
2t · · · U

(s)
Mt

)′
,

U = (U1 U2 · · · UN ) denote the N × N matrix with
columns

Us = (U1s U2s · · · UNs )′ ,

and Y = (Yij ) = (Y′
1 Y′

2 · · · Y′
N)′ denote an NM ×1 col-

umn vector with

Yi = ( Yi1 Yi2 · · · YiM )′ ,

a vector of random variables defining the two-stage permutation
of the population is

Y = (U ⊗ IM)

(
N⊕

s=1

U(s)

)
y, (13)

where
⊕N

s=1 As denotes a block-diagonal matrix with blocks
As (Harville 1997). A realization of Y corresponds to a particu-
lar two-stage permutation of the population. The average of the
first M random variables in Y is the latent value for the first
PSU.

In a similar manner, we permute the vector of response er-
rors, defining

W∗ = (U ⊗ IM)

(
N⊕

s=1

U(s)

)
W. (14)

Adding (13) to (14) results in

Y∗ = Y + W∗. (15)

This model accounts for the two-stage random permutations
and response error. The vector Y is exchangeable, whereas the
vector Y∗ is not, due to the addition of response error. The
model for a unit in the j th position in a cluster in the ith po-
sition is represented by Y ∗

ijk = Yij + W∗
ijk .

We use the parameterization in (7) and relationship (13) to
express the random permutation model as a mixed model. Us-
ing the elementary properties of the indicator random vari-
ables, it follows that U1N = 1N,U(s)1M = 1M, (U ⊗ IM) ×
(
⊕N

s=1 U(s))X = X, and (U ⊗ IM)(
⊕N

s=1 U(s))Z = U ⊗ 1M =
ZU. The two-stage permutation of X is nonstochastic due to the
simple structure of X in (9), whereas the two-stage permutation
of Z can be factored into the product of a nonstochastic matrix
times U due to the simple structure of Z in (10). Multiplying U
by β , we define

B = (B1 B2 · · · BN )′ = Uβ. (16)

The terms Bi = ∑N
s=1 Uisβs for i = 1, . . . ,N, are random ef-

fects, where Bi represents the deviation of the latent value for

PSU i from the population mean. Combining these expressions
and defining E = (U ⊗ IM)(

⊕N
s=1 U(s))ε, we obtain the ran-

dom permutation mixed model

Y∗ = Xµ + ZB + (E + W∗). (17)

Model (17) differs from the usual mixed model, because it rep-
resents all elementary units in the population, as opposed to
solely sampled units. The term (E + W∗) represents the devia-
tions of response for the SSUs from the PSU latent values.

2.3 Target Random Variables

We assume that there is interest in a linear combination of
the random variables Y of the form

T = g′Y, (18)

where g′ = (g′
1 g′

2 · · · g′
N ) with gi = (gi1, . . . , giM)′, i =

1, . . . ,N , is a vector of known constants. Linear combinations
of latent values for PSUs may be defined by taking

g′ = b′ ⊗ 1′
M

M
, (19)

where b = (b1, . . . , bN)′ is a vector of known constants. Of
principal interest is the linear combination that defines the latent
value of PSU i , that is,

g′ = e′
i ⊗ 1′

M

M
, (20)

with ei denoting an N × 1 vector with a value of 1 in position i

and 0 elsewhere. From (7), (13), (18), and (20), it follows that

T =
N∑

s=1

Uisµs. (21)

In the context of the superpopulation model described by
Scott and Smith (1969), extended by Bolfarine and Zacks
(1992) to include response error, the mean of PSU i is defined
as

TA = g′Y∗
, (22)

where TA = T + g′W∗ and g′ is defined by (20). The random
variables (18) and (22) have different interpretations, the differ-
ence being the addition of a response error term. A strength of
the finite-population sampling-based approach is the ability to
distinguish such subtleties in target random variables.

2.4 First and Second Moments of the Random
Permutation Mixed Model

Under the two-stage random permutation model (17), using
the subscript ξ1 to denote expectation with respect to permuta-
tions of the clusters, the subscript ξ2 to denote expectation with
respect to permutations of units in a cluster, and the subscript ξ3
to denote expectation with respect to response error, it follows
that

Eξ1ξ2ξ3(Y
∗) = Xµ (23)

and

varξ1ξ2ξ3(Y
∗)

= (σ 2
r + σ 2

e )INM + σ ∗2(IN ⊗ JM) − σ 2

N
JNM, (24)
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where

σ ∗2 = σ 2 − σ 2
e

M
, (25)

and Ja denotes an (a × a) matrix with all elements equal to 1
(see App. A).

3. PREDICTING THE MEAN AND LATENT VALUE OF
A PRIMARY SAMPLE UNIT BASED ON

A TWO–STAGE SAMPLE

We assume that m units in each of n clusters are selected
by two-stage sampling and that a single measure is obtained on
each of the nm SSUs in the sample. The sampling process gives
rise directly to the stochastic representation (17) of the popula-
tion. The random variables in the sample will be realized. Al-
though our principal interest is in predicting the latent value of
a realized PSU defined by (18) and (20), we develop unbiased
predictors for more general linear combinations of random vari-
ables. The predictors are linear functions of the random vari-
ables in the sample that minimize the expected value of the
mean squared error (MSE). The basic strategy has been given
by many authors (e.g., Scott and Smith 1969; Royall 1976;
Bolfarine and Zacks 1992; Valliant et al. 2000). We first par-
tition the elements of Y∗ into sampled and remaining portions,(

Y∗
I

Y∗
II

)
=

(
KI Y∗

KIIY∗

)
,

premultiplying Y∗ by K = (K′
I K′

II)
′, where

KI = (
In 0n×(N−n)

) ⊗ (
Im 0m×(M−m)

)
and

KII =
((

In 0n×(N−n)

) ⊗ (
0(M−m)×m IM−m

)
(
0(N−n)×n IN−n

) ⊗ IM

)
.

We partition X and Y in a similar manner, so that(
XI

XII

)
=

(
KI X

KIIX

)
=

(
1nm

1NM−nm

)
,

(
YI

YII

)
=

(
KI Y

KIIY

)
,

and

varξ1ξ2ξ3

(
Y∗

I

Y∗
II

)
= varξ1ξ2

(
YI

YII

)
+ σ 2

r INM,

where

varξ1ξ2

(
YI

YII

)
=

(
VI VI,II

VII,I VII

)
,

VI = σ 2
e Inm + σ ∗2(In ⊗ Jm) − σ 2

N
Jnm,

VI,II = V′
II,I

= σ ∗2(In ⊗ Jm×(M−m) 0nm×(N−n)M

)
− σ 2

N
Jnm×(NM−nm),

and

VII = σ 2
e INM−nm

+ σ ∗2
(

In ⊗ JM−m 0
0 IN−n ⊗ JM

)
− σ 2

N
JNM−nm.

Finally, we partition g′, resulting in (g′
I g′

II) = (g′K′
I g′K′

II),
and partition g′

II corresponding to K′
II as g′

II = (g′
1,II g′

2,II),
where

g′
1,II = g′

II

[(
In

0(N−n)×n

)
⊗

(
0m×(M−m)

IM−m

)]

and

g′
2,II = g′

II

[(
0n×(N−n)

IN−n

)
⊗ IM

]
.

We assume that the subset Y∗
I of the elements of Y∗ will be

realized, call such a subset “the sample,” and express the target
random variable T (or TA) as the sum of two parts. One of these
parts depends on the potentially realized sample, and the other
depends on the remaining random variables. We require that
the predictor of (18) be a linear function of the sampled random
variables, that is, that T̂ = (g′

I + a′)Y∗
I be unbiased, resulting

in the constraint that a′XI − g′
IIXII = 0, and that it minimize

the expected value of the MSE given by varξ1ξ2ξ3(T̂ − T ). No-
tice that the unbiased constraint requires only that Eξ1ξ2ξ3(T̂ ) =
Eξ1ξ2ξ3(T ) (see Robinson 1991). Because cluster sizes and sam-
ple sizes within clusters are equal, and a single observation is
included in the model for each SSU, the matrices XI and XII

are nonstochastic, avoiding the problem noted by Pfeffermann
(1984) in Porter’s (1973) development of predictors. Letting

T̂ − T = (
(a′ + g′

I ) −g′
I −g′

II

)



Y∗
I

YI

YII




and noting that

varξ1ξ2ξ3




Y∗
I

YI

YII


 =


 V∗

I VI VI,II

VI VI VI,II

VII,I VII,I VII


 ,

where V∗
I = VI + σ 2

r Inm, minimization of varξ1ξ2ξ3(T̂ − T )

subject to the unbiased constraint using Lagrangian multipliers
leads to

T̂ = g′
I

[
XI α̂ + VI V∗−1

I (Y∗
I − XI α̂)

]
+ g′

II

[
XII α̂ + V′

I,IIV
∗−1
I (Y∗

I − XI α̂)
]
, (26)

where α̂ = (X′
I V∗−1

I XI )
−1X′

I V∗−1
I Y∗

I . Simplifying terms,

α̂ = 1′
nm

nm
Y∗

I = Ȳ ∗,

Y∗
I − XI α̂ = PnmY∗

I ,

VI V∗−1
I Pnm =

[
ρt Inm + (1 − ρt )k

∗
(

In ⊗ Jm

m

)]
Pnm,
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and

V′
I,IIV

∗−1
I Pnm = k∗

(
In ⊗ J(M−m)×m

m

0(N−n)M×nm

)
Pnm,

where

ρt = σ 2
e

σ 2
e + σ 2

r

, k∗ = mσ ∗2

mσ ∗2 + (σ 2
e + σ 2

r )
,

and

Pa = Ia − Ja

a
.

Using these expressions, the predictor simplifies to

T̂ = g′
I

[
Jnm

nm
+

(
ρtInm + (1 − ρt )k

∗
(

In ⊗ Jm

m

))
Pnm

]
Y∗

I

+ g′
II

[
J(NM−nm)×nm

nm
+ k∗

(
In ⊗ J(M−m)×m

m

0(N−n)M×nm

)
Pnm

]
Y∗

I ,

which further simplifies to

T̂ = g′
I

[
1nmȲ ∗

I + (1 − ρt )k
∗(PnȲ∗

I ⊗ 1m) + ρtPnmY∗
I

]
+ g′

1,II[1n(M−m)Ȳ
∗
I + k∗(PnȲ∗

I ⊗ 1M−m)]
+ g′

2,II[1(N−n)MȲ ∗
I ], (27)

where Ȳ∗
I = (In ⊗ 1′

m

m
)Y∗

I is a vector of PSU sample means.
The first term in (27) is the predictor of the linear combina-
tion of random variables associated with the realized SSUs for
the sample PSUs. The second term is the predictor of the lin-
ear combination of SSUs that were not realized for the realized
PSUs, whereas the third term is the predictor of the linear com-
bination of the SSUs for PSUs not in the sample. Defining g′ as
in (20), the predictor in (27) simplifies to

T̂ =
(

m

M

)
e′
iI

(
1nȲ

∗
I + [ρt + (1 − ρt )k

∗]PnȲ∗
I

)

+
(

M − m

M

)
e′
iI (1nȲ

∗
I + k∗PnȲ∗

I )

+ (e′
iII1N−n)Ȳ

∗
I , (28)

where

e′
i =

(
e′
iI

1×n

e′
iII

1×(N−n)

)
.

The first two terms in (28) correspond to the predictor of the
linear combination of the random variables associated with a
sample PSU (i ≤ n); the third term is the predictor of the lin-
ear combination of the random variables associated with a PSU
that is not in the sample ( i > n). The term ρt + (1 − ρt )k

∗
accounts for response error and shrinks the average of the re-
alized values of the random variables associated with the sam-
ple SSUs,

∑m
j=1

1
m

Y ∗
ijk , toward the sample mean when i ≤ n.

The term k∗ accounts for both response error and between SSU
variation and is used to predict the random variables associ-
ated with the SSUs not included in the sample by shrinking the
PSU average toward the sample mean. A similar result holds

for more general linear combinations of random variables asso-
ciated with PSU latent values; in such cases,

e′
i =

(
e′
iI

1×n

e′
iII

1×(N−n)

)
is replaced by

b′ =
(

b′
I

1×n

b′
II

1×(N−n)

)
in (28).

We compare the predictor of (18) given by (27) to the predic-
tor of (22) given by

T̂A = g′
I Y∗

I + g′
1,II

[
1n(M−m)Ȳ

∗
I + k∗(PnȲ∗

I ⊗ 1M−m)
]

+ g′
2,II[1(N−n)MȲ ∗

I ]. (29)

The predictors differ only in the first term. Because the target
random variable defined by (18) includes response error, the
values associated with the realized SSUs are used directly in
the predictor. When g′ is defined by (20), the predictor (29)
simplifies to

T̂A =
(

m

M

)
e′
iI Ȳ∗

I +
(

M − m

M

)
e′
iI (1nȲ

∗ + k∗PnȲ∗
I )

+ [e′
iII1N−n]Ȳ ∗. (30)

This predictor is nearly identical to the predictor given by
Bolfarine and Zacks (1992), apart from differences in PSU vari-
ance parameter definitions.

When there is no response error, σ 2
r = 0, and the target ran-

dom variables given by (18) and (22) are the same. In this case,
the predictors given by (28) or (30) simplify to

T̂ =
(

m

M

)
e′
iI ȲI +

(
M − m

M

)
e′
iI (1nȲ + kPnȲI )

+ [e′
iII1N−n]Ȳ , (31)

because e′
iI (1nȲ + PnȲI ) = e′

iI ȲI , where

Ȳi =
∑m

j=1 Yij

m
,

ȲI = (Ȳ1 Ȳ2 · · · Ȳn)
′,

Ȳ =
∑n

i=1
∑m

j=1 Yij

nm
,

and

k = mσ ∗2

mσ ∗2 + σ 2
e

.

This result is nearly identical to the predictor developed by
Scott and Smith (1969), with the exception that the shrink-
age constant is defined relative to a between-PSU variance
component given by (25) as opposed to δ2. Although the pre-
dictors given by (3) and (31) are nearly identical, the model
assumptions differ. The predictor (31) is developed assuming a
response error model for each unit and a two-stage random per-
mutation of clusters and units in the finite population. These as-
sumptions give rise to different first and second moments than
the superpopulation model assumptions that underlie (3). The
probability model explicitly represents the two-stage sampling
of the finite population.
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The expected MSE of the BLUPs can be developed in a
straightforward manner (see App. B). When predicting a tar-
get random variable defined by (18) with g′ defined by (20), the
expression for the expected MSE simplifies, when i ≤ n, to

MSE(T̂ ) = (1 − fρt )

[
σ 2

e

nmρt

+
(

n − 1

n

)
(1 − k∗)σ 2

]
, (32)

where f = m
M

and, when i > n, to

MSE(T̂ ) = σ 2
(

1 − 1

N − n

)
+ σ ∗2

n
+ mσ 2 + σ 2

e + σ 2
r

nm
. (33)

In practice, variance parameters will be unknown and must
be estimated. Method-of-moment estimates can be obtained
by equating the expected mean squares to the observed mean
squares between clusters (MSB) and the observed MSE from an
ANOVA table, assuming that σ 2

r is known. We replace negative
variance estimates by 0. The estimate of the within-cluster vari-
ance is given by σ̂ 2

e = max(0,MSE − σ 2
r ). The between-cluster

variance is estimated by σ̂ 2 = max(0, 1
m

[MSB − MSE + f σ̂ 2
e ]),

and we estimate σ ∗2 by σ̂ ∗2 = max(0, 1
m

[MSB − MSE]). The
MSE of predictors that use estimated variance components will
be underestimated by the MSE assuming that the variance com-
ponents are known, because it will not account for variability in
the variance estimates in the predictor. A small-scale simula-
tion study has illustrated that the underestimation may be sub-
stantial and presents a complex pattern, motivating the need for
additional work in this area.

4. COMPARISON OF PREDICTORS

The predictors developed in Section 3 can be compared di-
rectly with predictors developed under mixed model or super-
population model assumptions. Using common notation and

setting k∗
r = mσ ∗2+σ 2

e

mσ ∗2+σ 2
e +σ 2

r
, when i ≤ n, the predictors of the la-

tent value of PSU i defined by (18) and (20) under different
models are summarized in Table 1. Each predictor can be in-
terpreted as the weighted sum of a term predicting the latent
values for the SSUs in the sample and a term predicting the la-
tent values for the remaining SSUs. The mixed-model predictor
places all of the weight on the second term and is the limit of
the predictor proposed by Scott and Smith (1969) under a su-
perpopulation model when the fraction of SSUs observed on a
realized PSU is so small that it basically can be neglected. In the
balanced two-stage sampling setting considered here, the pre-
dictor developed by Scott and Smith (1969) is nearly identical
to the predictor based on the random permutation model. The
difference between the predictors results from different defini-
tions of variance components and shrinkage constants. The two-
stage random permutation model permutes PSUs and hence has

Table 1. Predictors of the Latent Value of PSU i When i ≤ n in
Two-Stage Cluster Sampling

Predictor
Model = Sample SSUs + Remaining SSUs

Mixed model p̂i = (µ̂ + ki (Ȳi
∗ − µ̂))

Scott and Smith P̂i = f Ȳi
∗ + (1 − f )(µ̂

∗ + ki
∗
(Ȳi

∗ − µ̂
∗
))

Random perm. T̂i = f Ȳi
∗ + (1 − f )(Ȳ

∗+ k (Ȳi
∗ −Ȳ

∗
))

RP + Resp. err. T̂i = f (Ȳ
∗ + kr

∗
(Ȳi

∗ −Ȳ
∗
)) + (1 − f )(Ȳ

∗ + k
∗

(Ȳi
∗ −Ȳ

∗
))

a single SSU component of variance representing the average of
the SSU within-cluster variances (6), as opposed to the cluster-
specific components, σ 2

i . The between-PSU component of vari-
ance is defined by (25), as opposed to δ2. The context described
by Scott and Smith (1969) appears to match the context for two-
stage sampling, but their model assumptions for the variance
components do not correspond to the variance components that
arise from permuting clusters and units in a finite population.

When response error is present, the mixed-model and super-
population model predictors remain the same, but the random
permutation model predictor changes. Under the random per-
mutation model with response error, the linear combination of
the latent values of the realized SSUs for a selected PSU is
predicted using a shrinkage constant, k∗

r , determined by the re-
sponse error variance.

We simplify the expressions for the predictors in Table 1 un-
der the additional assumptions that the within-cluster variance
is identical for all clusters (and equal to σ 2

e ), and that the re-
sponse error variance is identical for all units (and equal to σ 2

r ).
With these assumptions, σ 2

i = σ 2
e + σ 2

r . Using a common nota-
tion (δ2 = σ 2), we have

ki = k∗
i = mσ 2

mσ 2 + σ 2
e + σ 2

r

,

and each predictor in Table 1 can be expressed as T̂ = Ȳ ∗ +
c(Ȳ ∗

i − Ȳ ∗), where the shrinkage constants c are given in Ta-
ble 2. When expressed in this form, the differences between
the predictors result from the different shrinkage constants. Be-
cause values of ki, k, k∗, and ρt are all between 0 and 1, each
of the predictors will be closer to the overall sample mean than
the simple mean of the realized SSUs for a realized PSU.

Under the random permutation model, the expected MSE of
each of the predictors can be expressed as a quadratic function
of c given by

MSE(T̂ ) = (1 − fρt )

[
σ 2

e

nmρt

+
(

n − 1

n

)
(1 − k∗)σ 2

]

+
(

n − 1

n

)
σ ∗2

k∗
(
c − [fρt + (1 − fρt )k

∗])2
. (34)

For the random permutation model with response error, the ex-
pected MSE simplifies to (32) and (33).

We can use the expression for the expected MSE to compare
the expected MSE of different predictors under the two-stage
random permutation model. The difference in expected MSE
between the mixed-model and random permutation model pre-
dictors is given by

MSE(T̂MM) − MSE(T̂RPR) =
(

n − 1

n

)
σ ∗2

k∗ (cMM − cRPR)2,

Table 2. Values of c for Predictors T̂ = Ȳ
∗ + c (Ȳi

∗ −Ȳ
∗
) of the Latent

Value of PSU i When i ≤ n in Two-Stage Cluster Sampling With
Homogeneous Unit and Response Error Variances

Model

Mixed model c MM = k i

Scott and Smith c SS = f + (1 − f )k i

Random permutation c RP = f + (1 − f )k

Random permutation with response error c RPR = fρt + (1 − fρt )k
∗



1126 Journal of the American Statistical Association, December 2004

Figure 1. Percent Increase in Expected MSE for Mixed Model ( ) and Scott and Smith Model ( ) Predictors Relative to the Random
Permutation Model Predictors of the Latent Value of a Realized Sample PSU by SSU Sampling Fraction (f = .1, .5, .9) and Cluster Intraclass Cluster
Correlation (ρs = .1, .5, .9). Assuming N = 100, n = 30, M = 20, and homogeneous unit and response error variances.

whereas the difference in expected MSE between Scott and
Smith’s predictor and the random permutation model predictor
is given by

MSE(T̂SS) − MSE(T̂RPR) =
(

n − 1

n

)
σ ∗2

k∗ (cSS − cRPR)2.

Because each expected MSE is evaluated under the random
permutation model assumptions where T̂RPR is optimal, the
differences are always positive. When evaluated under the
random permutation model, neither the mixed-model predictor
nor Scott and Smith’s predictor will have uniformly smaller ex-
pected MSE.

Figure 1 illustrates the percent increase in the expected MSE
that would occur when using the mixed-model predictor or
Scott and Smith’s predictor under a two-stage random permuta-
tion model. In certain settings, the expected MSE for the mixed-
model predictor and Scott and Smith’s predictor will exceed
that of the random permutation model predictor by more than
100%. The plots in Figure 1 are organized by columns with in-
creasing sampling fractions (f ) for a PSU. Rows correspond

to increasing cluster intraclass correlations, ρs = σ 2

σ 2+σ 2
e

. The

abscissa for the individual plots is the unit intraclass correla-
tion, ρt .

Several patterns can be seen in Figure 1. First, Scott and
Smith’s predictor has high expected MSE for small unit intr-
aclass correlations (ρt ), especially when the intraclass corre-
lation is modest (ρs < .5). Mixed-model predictors have high
expected MSE when the SSU sampling fraction is large, the
unit intraclass correlation is large, and the cluster intraclass cor-
relation is small. When unit intraclass correlations are large

(ρt > .75), Scott and Smith’s predictor has smaller expected
MSE than the mixed-model predictor. When the SSU sampling
fraction is small (f < .1), the difference in expected MSE be-
tween the mixed-model predictor and the random permutation
model predictor is small (< 5%).

5. EXAMPLE

To illustrate our methods, we consider a simple example
from a study of seasonal variation in serum cholesterol known
as the Seasons study (Merriam, Ockene, Hebert, Rosal, and
Matthews 1999). Four or more fasting serum cholesterol levels
(with at least one in the summer and in the winter) were col-
lected on a volunteer sample of 20- to 70-year-old members of
the Fallon Health Maintenance Organization (HMO) based on
5,000 patient contacts (Ockene et al. 2004) to quantify seasonal
patterns in cholesterol. Triplicate 24-hour diet recalls were col-
lected before fasting lipid levels, to control for the impact of
diet on cholesterol. A total of 414 subjects had three 24-hour
dietary recalls collected in a 6-week period before the first fast-
ing cholesterol measure. The days of collection were selected
using a stratified random sample of days in the eligible period,
with two weekdays and one weekend day selected. We focus
on estimating saturated fat intake for a subject (cluster) corre-
sponding to the first measure of serum cholesterol based on the
three 24-hour diet recalls in the 6-week period preceeding the
cholesterol measure.

Neither the study subjects (which we consider here as clus-
ters) nor the 24-hour recall days were selected via simple ran-
dom sampling. Assuming that the 20- to 70-year-old Fallon
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HMO membership is 25,000, we estimate the volunteer “partic-
ipatory” population to be of size N = 2,070. A stochastic model
is needed to make predictions; we assume a two-stage random
permutation model to predict average latent saturated fat intake
for sampled subjects over the 6-week (M = 42 days) period.
The model is simple and plausible, but ignores the stratification
of weekdays and weekends and assumes that the participating
subjects are selected via simple random sampling.

The average saturated fat intake for the n = 414 study sub-
jects was 24.8 g/day, with individual subject averages ranging
from 2.7 to 92 g/day. The the 95th percentile average saturated
fat intake was equal to 50 g/day. A one-way ANOVA model re-
sulted in MSB = 484 (g/day)2, and MSE = 165 (g/day)2. Un-
fortunately, the response error variance for saturated fat intake
based on a 24-hour recall is not known. Reliability (i.e., ρt ) is
estimated to range from about .4 to .9 (Willett 1990) based on
dual 24-hour interviews on the same day. Using these estimates,
we assume that the response error variance is σ 2

r = 25 (g/day)2

or σ 2
r = 100 (g/day)2 when evaluating the predictors.

For illustration, we predict the latent saturated fat intake over
the 42-day period for the realized subject whose average 3-day
saturated fat intake was 50 g/day. Using method of moments
estimates, when σ 2

r = 25 (g/day)2, variance components are
estimated as σ̂ 2 = 110 (g/day)2 and σ̂ 2

e = 140 (g/day)2. Us-
ing the variance components to estimate c in Table 2, it follows
that T̂RPR = 41.9 (g/day). Predictors based on a mixed model
[T̂MM = 41.5 (g/day)] or Scott and Smith’s model [T̂SS =
42.2 (g/day)] are similar. The expected MSEs of the predictors
are also similar, because f = .071 and estimates of ρs and ρt

are given by .44 and .85 (see Fig. 1).
Somewhat larger differences occur when we predict the la-

tent saturated fat intake over a 7-day period for the realized
subject whose average 3-day saturated fat intake was 50 g/day,
assuming that σ 2

r = 100 (g/day)2. Now σ̂ 2 = 116 (g/day)2 and
σ̂ 2

e = 65 (g/day)2, so that T̂RPR = 42.9 (g/day). The mixed-
model predictor is T̂MM = 41.9 (g/day), and Scott and Smith’s
predictor is T̂SS = 45.3 (g/day). The expected MSEs of the pre-
dictors are once again similar, because f = .428 and estimates
of ρs and ρt are given by .64 and .39 (see Fig. 1).

6. DISCUSSION

We have developed predictors of latent values of clusters in a
finite population based on a simple probability model that com-
bines a response error model for each unit and a random per-
mutation model for the two-stage finite-population sampling.
The model is based on the design, explicitly accounting for the
labeled finite population of clusters and units. Others have con-
sidered a problem similar to the one presented here, but our
approach has substantial differences in terms of formulation of
problem and/or the development of a solution.

Konijn (1962) used inclusion probabilities from a two-stage
cluster design to define unbiased estimators in a regression
model setting. The finite population included a nonstochastic
covariate associated with each unit, and in that sense is more
general than ours. However, the models considered by Konijn
exclude settings where the covariate is equal to 1 for all units in
a cluster (which is the setting discussed here). In addition, al-
though Konijn’s estimators are unbiased, they have no optimal
properties. The predictors developed in Section 3 are based on

the design, are unconditionally unbiased, and have minimum
MSE.

Pfeffermann and Nathan (1981) extended Scott and Smith’s
(1969) nested superpopulation model to predict regression co-
efficients using an approach similar to that we discuss in Sec-
tion 3. The sample design was not used in defining the model’s
first and second moments. Similar to the approach of Konijn
(1962), a nonstochastic covariate was associated with each unit,
and regression parameters differed between clusters. When
the covariate is assumed to equal 1 for all units in a cluster, the
model considered by Pfeffermann and Nathan is similar to the
random permutation model. In this case an important differ-
ence between the two models is that Pfeffermann and Nathan’s
model has zero lack of fit for each unit in a cluster, whereas the
random permutation model accounts for lack of fit in the pre-
diction. As noted by Konijn (1962, p. 591), the assumption of
perfect fit for such regression models is rarely, if ever, satisfied.
The model in Section 2 accounts for lack of fit, and thus the re-
sults in Section 3, which differ from Pfeffermann and Nathan’s
results, have practical relevance.

Other stochastic models have been proposed in this setting.
The usual mixed model sidesteps defining a finite population, or
clusters and units, while accounting for a hierarchy of random
variables via an assumed mean and variance structure. Model-
based survey methods do not link the superpopulation to the
survey design. Each of the models can be characterized by the
first and second moments of a set of random variables (nm ran-
dom variables in the mixed model and NM random variables
in the superpopulation and random permutation models). Pre-
dictors are developed in a similar manner in all three models.
However, the latent value of a PSU is not readily specified in
the superpopulation model when response error is present, and
the mixed model does not account for finite population sam-
pling of units. In contrast, the random permutation model with
response error can be used to specify the latent value of a PSU
while accounting for finite-population sampling.

Appealing to the advantages of the random permutation
model, we compare the predictors of the latent value for PSU i

(when i ≤ n) in Table 2 of Section 4. If we view the mixed
model and the superpopulation model as earlier attempts to
mimic the two-stage sampling, then it is appropriate to evalu-
ate predictors from these models under the random permutation
model assumptions. Statistical inference boils down to predict-
ing linear combinations of latent values of units, either observed
with error, or unobserved. The BLUP in mixed models (2) is the
limit of the predictor proposed by Scott and Smith (1969) under
a superpopulation model when the fraction of SSUs observed in
a realized PSU is so small that it can basically be neglected. The
traditional BLUP places all of the weight on predicting the ran-
dom variables associated with the unobserved SSUs. Ignoring
the proportion of observed SSUs has the disadvantage of in-
creased model sensitivity due to reliance solely on model-based
predictors. For example, when there is no response error, if a
high fraction of SSUs (say 90%) are observed for a selected
PSU, then a large portion of the units composing the PSU are
known and need not be predicted. Mixed-model approaches act
as if all SSUs must be predicted.

In the balanced two-stage sampling setting considered here,
the predictor developed by Scott and Smith (1969) is nearly
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identical to the predictor (31) based on the finite-population
sampling model. The context described by Scott and Smith ap-
pears to match the context for two-stage sampling, but the su-
perpopulation model assumptions for the variance components
do not correspond to the two-stage sampling variance compo-
nents. It is difficult to conceive of a data-generation scheme
with clusters and units that would lead to the superpopulation
model assumptions. The superpopulation model is in this sense
artificial. When response error is present, different target ran-
dom variables can be specified corresponding to the latent val-
ues of a PSU (21) that are not captured in the superpopulation
model framework.

The models and methods that we present here are limited to
balanced settings with a single measure for each realized SSU.
Extensions to settings with different numbers of measures on
SSUs, to unbalanced situations, and to settings including other
covariables would be desirable. Settings with different numbers
of measures on SSUs may be accommodated by taking an av-
erage over the measures for a SSU and defining the response
error standard deviation by the response error standard error for
the SSU. The interpretations of the average response error vari-
ance (5) will differ. Note that this extension assumes that the
difference in the number of measures per SSU is part of the
sampling design.

Extensions to settings where there are different cluster sizes,
and possibly different sampling fractions for different clusters,
are more complicated. For such extensions when there is no
response error, basic random variables that identify both units
and positions, that is, Yistj = UisU

(s)
j t yst , are required. Such ex-

panded random variable notation enables the preservation of
nesting of subjects in clusters in a random permutation model.
Difficulties arise with the expanded random variables due to
singularities that have led to representing data for each PSU in
the sample and remainder as totals, or averages. Finally, exten-
sions to settings involving covariables on PSUs and/or SSUs are
of obvious interest. Such extensions have been developed in a
related context with domains, but have not been extended to a
two-stage sampling setting (Lencina 2002; Li 2003).

A final caution is warranted when interpreting predictors of
random effects. An appealing interpretation of the predictor of
a realized random effect is that it predicts the latent value for
the realized PSU. Thus if the realized value of Uis is equal to 1,
then the target parameter given by (21) is µs . This interpreta-
tion, although seemingly self-evident, may not apply in a two-
stage sampling setting. A hint of some problem is apparent in
the fact that clusters are not identifiable when representing the
two-stage random permutation model as in (13). Dividing the
random variables into a sample and remaining portion (as in
Sec. 3) will identify clusters that correspond to realized PSUs,
because the values of Uis will be realized (for i ≤ n) in the
sample. When PSUs are of different sizes, some extra care is
needed beyond the usual representation as in (13) to verify that
the predicted SSUs actually correspond to SSUs for the realized
PSU. Aspects of the distinction between a cluster and a PSU
are discussed in the context of simple random sampling else-
where (Lencina 2002; Stanek, Singer, and Lencina 2004). The
basic problem can be related to the conventional representation
of random variables arising from sampling. In this regard, the
work of Godambe (1955) provides a more general framework
that may enable a more straightforward strategy for prediction
and interpretation.

APPENDIX A: THE VARIANCE UNDER A TWO–STAGE
RANDOM PERMUTATION MODEL WITH

RESPONSE ERROR

We evaluate the variance of Y∗ using the conditional expan-
sion of the variance, that is, varξ1ξ2ξ3(Y

∗) = Eξ1ξ2 [varξ3|ξ1ξ2(Y
∗)] +

varξ1ξ2 [Eξ3|ξ1ξ2(Y
∗)]. Given ξ1 and ξ2 and using (14) and (15), be-

cause Y is nonstochastic, it follows that

varξ3|ξ1ξ2(Y
∗) =

[
(U ⊗ IM)

(
N⊕

s=1

U(s)

)]

× varξ3|ξ1ξ2(W)

[
(U ⊗ IM)

(
N⊕

s=1

U(s)

)]′
.

Now,

varξ3|ξ1ξ2(W) = Dr2 =
N⊕

s=1

Dr2
s
,

where r2 = (r2′
1 r2′

2 · · · r2′
N)′, r2

s = (σ 2
s1 σ 2

s2 · · · σ 2
sM)′,

and Da represents a diagonal matrix with diagonal elements equal to
the elements of a. Thus

varξ3|ξ1ξ2(Y
∗)

=
[
(U ⊗ IM)

(
N⊕

s=1

U(s)

)]
Dr2

[
(U ⊗ IM)

(
N⊕

s=1

U(s)

)]′
.

Because Eξ3|ξ1ξ2(Y
∗) = Y,

varξ1ξ2ξ3(Y
∗)

= Eξ1ξ2

[[
(U ⊗ IM)

(
N⊕

s=1

U(s)

)]
Dr2

[
(U ⊗ IM)

(
N⊕

s=1

U(s)

)]′]

+ varξ1ξ2

[
Y

]
, (A.1)

with Y defined by (13).
Using the conditional expansion, we express the first term in as

Eξ1

[
(U ⊗ IM)Eξ2|ξ1

[(
N⊕

s=1

U(s)

)
Dr2

(
N⊕

s=1

U(s)

)′]
(U ⊗ IM)′

]
.

Then

Eξ2|ξ1

[(
N⊕

s=1

U(s)

)
Dr2

(
N⊕

s=1

U(s)

)′]
=

N⊕
s=1

Eξ2|ξ1

[
U(s)Dr2

s
U(s)′].

The matrix in parentheses is a diagonal matrix with diagonal elements
interchanged for all positions on the diagonal. As a result, defining

σ̄ 2
s = ∑M

t=1
σ 2

st
M , the expectation is given by Eξ2|ξ1 [U(s)Dr2

s
U(s)′] =

σ̄ 2
s IM . Thus

Eξ1ξ2

[[
(U ⊗ IM)

(
N⊕

s=1

U(s)

)]
Dr2

[
(U ⊗ IM)

(
N⊕

s=1

U(s)

)]′]

= Eξ1

[
(U ⊗ IM)

(
N⊕

s=1

σ̄ 2
s IM

)
(U ⊗ IM)′

]

= Eξ1

(
UDσ̄ 2

s
U′) ⊗ IM,

where Dσ̄ 2
s

is an N ×N diagonal matrix with elements σ̄ 2
s on the diag-

onal. In a similar manner, we find that Eξ1(UDσ̄ 2
s

U′)⊗ IM = σ 2
r INM ,
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where σ 2
r = ∑N

s=1
σ̄ 2

s
N . As a result,

Eξ1ξ2

[[
(U ⊗ IM)

(
N⊕

s=1

U(s)

)]
Dr2

×
[
(U ⊗ IM)

(
N⊕

s=1

U(s)

)]′]
= σ 2

r INM. (A.2)

Next we evaluate varξ1ξ2(Y) = varξ1 [Eξ2|ξ1(Y)]+Eξ1 [varξ2|ξ1(Y)].
The first term in this expansion is given by varξ1 [Eξ2|ξ1 (Y)] =
varξ1 (Xµ + ZB). Now varξ1 [Eξ2|ξ1(Y)] = varξ1 (Uβ) ⊗ JM , where
varξ1 (Uβ) is equal to the variance of a random permutation of clus-
ter latent values in the population. As a result, varξ1 [Eξ2|ξ1(Y)] =
σ 2(PN ⊗ JM), where Pa = Ia − Ja

a . We evaluate the second term in
the conditional expansion of the variance in a similar manner. For the
cluster in position i in a given permutation of clusters, the variance of
the SSUs is

varξ2|ξ1

(
Yi

M×1

)
= s2

i PM,

where s2
i is the realization of the random variable S2

i = ∑N
s=1 Uisσ

2
s .

Also, due to independence of the permutations of units, covξ2|ξ1(Yi ,

Yi∗) = 0M×M for i �= i∗. Combining these results for all i =
1, . . . ,N,varξ2|ξ1 (YNM×1) = Ds ⊗ PM where Ds is a diagonal ma-
trix with diagonal elements equal to the elements in the vector sN×1 =
(s2

i ). Taking the expectation over random permutations of clusters, we
have

Eξ1(S
2
i ) =

N∑
s=1

σ 2
s

N
= σ 2

e ,

and, hence,

varξ1ξ2(Y) = σ 2(PN ⊗ JM) + σ 2
e (IN ⊗ PM). (A.3)

Adding (A.2) to (A.3) results in (24).

APPENDIX B: DEVELOPMENT OF
THE EXPECTED MSE

We develop the expected MSE for the predictor given by (27) of the
random variable

T = (g′
I g′

II)

(
YI

YII

)
.

First, we express the predictor as

T̂ = (g′
I A′ + g′

IIB′)Y∗
I ,

where

A′ =
[

Jnm

nm
+ (1 − ρt )k

∗
(

Pn ⊗ Jm

m

)
+ ρtPnm

]

and

B′ = J(NM−nm)×nm

nm
+ k∗

((
Pn ⊗ J(M−m)×m

m

)
0(N−n)M×nm

)
.

As a result,

T̂ − T = (
(g′

I A′ + g′
IIB′) −g′

I −g′
II

)
 Y∗

I

YI

YII


 .

Using the expression for

varξ1ξ2ξ3




Y∗
I

YI

YII


 =




V∗
I

VI VI,II

VI VI VI,II

VII,I VII,I VII


 ,

the MSE simplifies to

MSE(T̂ ) = (g′
I g′

II)

(
C11 C′

21

C21 C22

)(
gI

gII

)
, (B.1)

where C11 = (A′ − Inm)VI (A − Inm) + σ 2
r A′A,

C21 = (B′VI − VII,I )(A − Inm) + σ 2
r B′A,

and

C22 = B′VI B − 2VII,I B + VII + σ 2
r B′B.

Simplifying terms, we have

C11 =
[
ρt Inm + (1 − ρt )k

∗
(

In ⊗ Jm

m

)
− (1 − ρt )(k

∗ − 1)
Jnm

nm

]
σ 2
r ,

C21 =

k∗(In ⊗ J(M−m)×m

m

) − (k∗ − 1)
Jn(M−m)×nm

nm
J(N−n)M×nm

nm


σ 2

r ,

and

C22 =




σ 2
e In(M−m) + k∗(σ 2

e + σ 2
r )

(
Pn ⊗ J(M−m)

m

)
+ (σ 2

e + σ 2
r )

Jn(M−m)

nm

(σ 2
e + σ 2

r )
J(N−n)M×n(M−m)

nm

(σ 2
e + σ 2

r )
Jnm×(N−n)M

nm

σ 2
e I(N−n)M + mσ ∗2(IN−n ⊗ JM

m

)
+ (mσ ∗2 + σ 2

e + σ 2
r )

J(N−n)M

nm


 .

The expected MSE given by (32) is obtained by setting g′ equal to
(20) in (B.1) and simplifying. Expressions for the expected MSE of the
predictor of TA given by (29) can be developed in a similar manner.

[Received January 2003. Revised January 2004.]
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