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Abstract 

We develop a design-based prediction approach to estimate the finite population mean 

in a simple setting where some responses are missing.  The approach is based on indicator 

sampling random variables that operate on labeled units (subjects). Missing data mechanisms are 

defined that may depend on a subject, or on a selection (such as when the study design assigns 

groups of selected subjects to different interviewers).  Using an approach usually reserved for 

model-based inference, we develop a predictor that equals the sample total divided by the 

expected sample size.  The methods are direct extensions of best linear unbiased prediction 

(BLUP) in finite population mixed models. When the probability of missing is estimated from 

the sample, the empirical estimator simplifies to the mean of the realized non-missing responses.  

The different missing data mechanisms are revealed by the notation that accounts for the labels 

and sample selections.  The mean squared error (MSE) of the empirical estimator, counter-

intuitively, is smaller than the MSE if the probability of missing is known. 

KEYWORDS: Simple random sampling, Missing data, MCAR, finite population, Best 

linear unbiased estimator (BLUE), prediction.  
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1. Introduction 

 

Statistical analysis in the presence of incomplete or missing data is a pervasive 

problem in sample surveys.  A simple example illustrates the problem.  Suppose that a voter 

opinion poll is conducted via a simple random telephone sample selected from a list of registered 

voters.  Although a sample of size n  is selected, response will most likely be obtained on  1n n<  

selected subjects.  Some of the registered voters will have answering machines and screen calls, 

resulting in non-response.  In addition, poor interviewing skills by some interviewers may result 

in refusals for other contacted subjects.  The first type of non-response depends on the subject, 

while the second type of non-response depends on the interviewer.   

In the simplest setting, the probability of non-response will be unrelated to the actual 

voter preference of the subject.  If this is true, the missing responses are called missing 

completely at random (MCAR) (Little and Rubin 1987).  For example, if the proportion of 

registered voters who screen calls among those who would vote for a candidate is the same for 

all candidates, then the missing responses are MCAR.  Also, if the proportion of refusals that 

result from poor interviewer skills is the same for voters of all candidates, the missing responses 

are MCAR.  MCAR is the simplest kind of non-response assumption.  It is often assumed as a 

starting point in an analysis, as we do here.  

How should one estimate the voter preference for a candidate when response for some of 

the selected sample subjects is missing?  An intuitive estimator is the simple proportion (i.e. 

mean) of the 1n  responding subjects who would vote for the candidate. This is the estimator 

described by Cochran (1977).  Although intuition is a good guide in selecting this estimator, the 

estimator is not a simple linear function of the sample data, since the denominator is a random 
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variable.  A way around this complication is to condition on the observed sample size, 1n .  Oh 

and Scheuren (1983) and Rao (1985) have used this approach to show that the estimator is 

unbiased.  The conditional approach, however, draws into question the role of the underlying 

simple random sampling in statistical inference.  We examine this simple problem and show how 

explicit specification of sampling indicator random variables will result in a probability model 

familiar to other problems.  Straight forward application of prediction methods gives rise to a 

predictor that depends on the probability of missing response, which, when replaced by the 

sample estimate, reduces to the mean of the observed responses.   

 

2.  The Population 

 

We define a finite population as a collection of a known number, N , of identifiable 

subjects labeled 1,2, ,s N= L . Associated with subject s  is a response sy , which we assume is 

potentially observable without error.  In the voting preference survey, sy  corresponds to an 

indicator that assumes a value of one if subject s  will vote for the incumbent, and zero otherwise.  

When there are more than two choices, response corresponds to a set of indicators for the 

candidates, with only one having a value of one. In this context, we will limit our interest to 

votes for a single candidate, and thus consider a single response variable.  The assumption of no 

response error corresponds to each subject having no uncertainty as to their vote. 

We summarize the set of population values in the vector ( )1, , Ny yy L ′= and assume that 

there is interest in a 1p×  vector of parameters of the form β = Gy  where G  is a matrix of 

known constants. We limit our attention to a single parameter, the population mean given by 



Simple random Sampling with Missing Data 

C04ed02v3.doc  2/1/2007                                             

10- 4 -

- 4 -

1

N

s
s

yβ μ
=

1′ = = =
Ν∑g y , defined by setting N

N
1

g
¢

¢= , and define the population variance as 

( )22

1

1σ μ
=

− 1
= −
Ν∑

N

s
s

N y
N

. 

 

3.  Sampling, Missing Data, and Prediction 

 

Suppose that a simple random sample without replacement is to be selected from the 

population.  We define the possible samples as the set of all possible permutations of the 

population.  In simple random sampling, each permutation is equally likely.  This representation 

has been discussed by Cassel, Särndal and Wretman (1977) and explored in the context of  

super-population models by Rao and Bellhouse (1978).  Our discussion is closely related to these 

presentations, but follows the definition and notation used by Stanek, Singer and Lençina (2004) 

for random variables corresponding to positions in a randomly selected permutation.   We define 

the elements occupying the first n  positions in the permutation to be the sample.    

Let 1,2, ,i N= L  index the positions in a permutation.  We represent the value in position 

i of a randomly selected permutation by the random variable 
1

N

i is s
s

Y U y
=

=∑ , where 1isU =  if unit 

s  is in position i and 0isU =  otherwise. When all permutations are equally likely, the random 

vector ( )1, , NY YY L ′=  is a random permutation of the population (as in Cassel, Särndal and 

Wretman 1977). We can relate Y to y  such that =Y Uy , where  

11 1
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N NN
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U U
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Note that y  is a vector of constants indexed by the labeled subjects, while Y  is a vector of 

random variables indexed by the positions.  Realizing a value of iY  will not reveal which subject 

is occupying position i  in the permutation, although it will reveal the value corresponding to the 

realized subject.  To know which subject occupies position i  in a permutation, we need to know 

the realized value of the random variable
1

N

i is
s

S U s
=

= ∑ . 

These subtle distinctions can be illustrated with the voting preference example.  Suppose 

that the realized response for the first selected subject ( 1i = ) is a vote for the incumbent.  Simply 

knowing the realized value of 1Y  does not tell us which subject voted for the incumbent, it only 

tells us that one of the subjects voted this way.  In order to know which subject cast this vote, we 

need to know which subject occupied the first position in the permutation, i.e. the realization of 

1S .  This could be recorded along with the realized value of 1Y , resulting in a bivariate response.  

Typically, the additional variate representing the labeled unit is dropped from the analysis.  

Although not relevant for the present discussion, the subtle difference between the realized value 

of a position and the realized value of a subject is what makes interpretation of realized random 

effects in mixed models so challenging (see Stanek, Singer, and Lençina (2004) for additional 

discussion).    

Since each subject has an equal chance of being assigned to a given position in a 

permutation, ( )iE Yξ μ=  for 1,...,i N= , where ξ  denotes expectation over permutations.  We 

can summarize this expected value structure in a linear model given by β= +Y X E  where 

N=X 1  and β μ= .   

We partition the vector of random variables into a subset which we call the sample, 
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( )1, ,I nY YY L ′= , indexed by 1,2, ,i n= L , and the remainder, ( )1, ,II n NY YY L+
′= , indexed by 

1, ,i n N= + L , such that ( )I IIY Y Y
′′ ′= .  The prediction approach to inference makes use of 

the fact that the realized sample is the realized values of IY .  In order to estimate a parameter 

that is a linear function of Y , the basic problem is prediction of a linear function of IIY  that is 

not observed.  The linear function is determined by the parameter of interest.  For example, since 

the population mean can be represented by I II
n N ny Y
N N

μ −
= +  , (where 

1

1 n

I i
i

y y
n =

= ∑  with iy  

representing the realized value of iY  and 
1

1 N

II i
i n

Y Y
N n = +

=
− ∑ ), an estimator of μ  based on a 

simple random sample requires prediction of IIY .   

 We illustrate this process with a simple example.  Suppose we have a population with 

size 4=N  and select a sample without replacement of size 2=n . We represent the population 

as ( )1 2 3 4y y y y ′=y  and a random permutation of the population as 

( )1 2 3 4Y Y Y Y ′=Y . The first two random variables in the permutation make up the sample.  

A total of ! 24N =  possible permutations can occur, with each of them equally likely.  The 

results of three possible permutations are given in Figure 1.   
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Figure 1.  Example of Realized Sample for Three Possible Permutations where 4N =  and 2n =  
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The random variables 3Y  and 4Y  will not be observed.  Predicting their sum in the expression IIY  

is the basic problem of inference.   

Predictors of this function can be developed using the approach of Royall (1988) which 

has been recently summarized by Valliant, Dorfman, and Royall (2000) in the context of super-

population models.  It is not necessary to introduce a super-population to apply the approach to 

simple random sampling.  We assume that the predictors are a linear function of the sample, are 

unbiased, and will result in minimum expected MSE.  The resulting predictor, ˆ
IIY , is called the 

best linear unbiased predictor (BLUP).  When combined as a weighted linear function with the 

sample mean,  the estimator of μ  is the best linear unbiased estimator (BLUE).  Under simple 

random sampling, the BLUP of IIY  is Iy , so that the BLUE of  μ  is Iy , the simple sample mean 
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(Stanek, Singer, and Lençina 2004).  

 

3.1. Two Methods of Specifying Missing Data 

 

 Under the assumption of MCAR, we specify two models that account for missing data.  

In each model, we assume the probability of a missing response is constant, and equal to π .  The 

first model represents the missing data mechanism by random variables indexed by the position 

of a subject in the sample, iM , 1,...,i N= , where iM  takes on a value of one if response is 

missing for position i , and zero otherwise.  Such random variables may represent a missing data 

mechanism for factors determined by the study design, as for example when different 

interviewers are assigned groups of sample subjects to interview.  The second model represents a 

missing data mechanism by random variables indexed by subjects, sH , 1,...,s N= , where sH  

takes on a value of one if response is missing for subject s , and zero otherwise.  Such random 

variables may represent a missing data mechanism where a factor, such as answering machine 

screening, depends on individual subjects.  The two missing data mechanism emphasize the 

distinction between subject labels and sample positions. 

 

3.1.1.  A Model for Response when Missing Data Depends on Sample Subject Positions 

 

 We first consider the setting where the missing data mechanism is indexed by the 

position of subjects in the sample, as might occur if interviewers are assigned to consecutive 

selected subjects.  We incorporate the missing data mechanism into the random permutation 

model by augmenting the N  random variables to a vector of 2N  random variables.   



Simple random Sampling with Missing Data 

C04ed02v3.doc  2/1/2007                                             

10- 9 -

- 9 -

 The first N  random variables in the vector correspond to potentially observed responses.  

The thi random variable is given by ( )1 i iM Y− .  If i n≤ , the random variable will be realized in 

the sample.  When the realized value of iM  is 0im = , response for the subject selected in 

position i  is given by the realized value of iY , i.e. iy .  When the realized value of iM  is 1im = , 

response for the subject selected in position i  is missing, and the value of the realization, 

( )1 i im Y− , is zero.  Thus, the first N  random variables are the potentially observable responses 

for random variables representing a permutation.   

 The second N  random variables in the vector correspond to missing responses.  The 

thi random variable is given by i iM Y .  If i n≤ , the random variable will be realized (but the 

value of the random variable will not be observed) in the sample.  For example, when the 

realized value of iM  is 1im = , response for the subject selected in position i  is missing, but the 

realized value of i iM Y  will correspond to the realized value of i im Y , i.e. iy .  Although this value 

will not be observed by the investigator, it will be contained in the second set of random 

variables.  When the realized value of iM  is 0im = , response for the subject selected in position 

i  is not missing, but the value of the realization, i im Y , is zero.  Thus, the second N  random 

variables are the potentially observable responses for realized random variables representing a 

permutation where response is missing.   

 When the probability of missing depends on position, we represent the first N  random 

variables by the product  ( )*
N −I M Y , where *

1

N

ii
MM

=
= ⊕  is a diagonal matrix with diagonal 

elements given by iM .  We partition this vector into an 1n×  vector representing the sample, 

( )o
IY , and the remainder, ( )o

IIY , such that ( ) ( ) ( )( )* ′− = o o
N I III M Y Y Y , where the superscript is a 
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reminder that these random variables are potentially observed.  The second N  random variables 

corresponding to missing responses are given by the product ( ) *=mY M Y .   We represent the 

vector of 2N  random variables by ( ) ( ) ( )( )1
′= o o m

I IIZ Y Y Y .  Elements of this vector are given 

by  ( ) ( )1
1

1
=

= − ∑
N

o
i i is s

s

Z M U y  and ( )
1

1=

= ∑
N

m
i i is s

s

Z M U y . 

 

3.1.2.  A Model for Response when Missing Data Depends on Labeled Subjects 

 

 When the probability of missing depends on the subject, we represent the potentially 

observable random variables by a 2 1N ×  vector in a similar manner.  We form the first vector of 

N  random variables that are potentially observed by the product  ( )*
N −U I H y , where 

*

1

N

ss
H

=
= ⊕H  is a diagonal matrix with diagonal elements given by sH .  We partition this vector 

into an 1n×  vector representing the sample, ( )o
Iϒ , and the remainder, ( )o

IIϒ , using the same 

notation, but where  ( ) ( ) ( )( )* ′− = o o
N I IIU I H y ϒ ϒ .    Elements of ( )o

Iϒ  are now of the form 

( ) ( )2
1

1
=

= −∑
N

o
i is s s

s

Z U H y  for 1,...,i n= .  When 0sh = , the realized value for the subject s  is not 

missing and may be observed; when 1sh = , the realized value of the random variable ( )
2

o
iZ  is 

zero.  The N  random variables in the vector corresponding to missing responses are given by 

the product ( ) * ′=m UH yϒ  with elements ( )
2

1=

= ∑
N

m
i is s s

s

Z U H y .   

 We represent the vector of 2N  random variables by ( ) ( ) ( )( )2
′= o o m

I IIZ ϒ ϒ ϒ .  The 
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random variables in the 1×n  vector ( )o
IY  are observed as a result of sampling.  The elements of 

( )o
IIϒ  and ( )mϒ  are not observed.  Notice that unobserved random variables correspond to both the 

missing data, and to the portion of the population that is not included as part of the sample.  

Although these random variables are represented distinctly, they share the common status of 

‘missing data’. 

 

3.2.  First and Second Moments. 

 

 We develop the expected value and variance of the 2 1×N  vector of random variables 

representing the population next.  Expectation is taken with respect to random variables 

representing the missing data mechanism, 1ξ , and with respect to random permutations of the 

population, 2ξ .  For example, the elements of 1Z  are of the form ( ) ( )1
1

1
=

= − ∑
N

o
i i is s

s

Z M U y  and 

( )
1

1=

= ∑
N

m
i i is s

s

Z M U y .  Using conditional expectation,  

( )( ) ( )( )1 2 1 2 2 11 | 1ξ ξ ξ ξ ξ ξ
⎡ ⎤= ⎣ ⎦

o o
i iE Z E E Z , and since ( )( ) ( )

2 1| 1 1o
i iE Z Mξ ξ μ= − , ( )( ) ( )

1 2 1 1ξ ξ π μ= −o
iE Z .  

Similarly, ( )( )1 2 1ξ ξ πμ=m
iE Z .  Combining these expressions, ( )

1 2 1

1
ξξ

π
μ

π
⎡ − ⎤⎛ ⎞

= ⊗⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

NE Z 1 .   

 The results illustrate that the expected value of random variables in the sample, ( )
1

o
iZ  are 

not equal to the population mean.  This result is intuitive if we recall that when a response is 

missing, the observed response is zero (as a result of introducing the missing data random 

variables in the model).  For example, if the probability of a missing response is π = 0.20 , the 

expected value of a potentially observable random variable, ( )
1

o
iZ , 1,...,i n=  is 80% of μ .  The 
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expected value doesn’t imply that there is bias, but simply that the expected value will be closer 

to zero than the population mean.  The identical results are obtained taking the expected value of 

the random variables 2Z , such that ( )
1 2 2

1
NEξξ

π
μ

π
⎡ − ⎤⎛ ⎞

= ⊗⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

Z 1 . 

 The variance can be developed in a similar manner.  Using a conditional expansion,  

( ) ( ) ( )
1 2 1 2 1 1 2 11 | 1 | 1var var varE Eξξ ξ ξ ξ ξ ξ ξ⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦Z Z Z .   To evaluate this expression, we define  

( )* *
N

′′ ′= −M I M M , such that 1 =Z MUY .  Then ( )
2 1| 1 NEξ ξ μ=Z M1 , where 

N
N

N

⎛ ⎞ −⎛ ⎞
= +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

1 m
M1 0 m

, and ( )1 2 NM M M=m L .  Note that 

( ) ( )
1 1

1 1
var var

1 1Nξ ξ

−⎛ ⎞
= ⊗⎜ ⎟−⎝ ⎠

M1 m .  Since we assume the missing data random variables are 

independent, ( ) ( )
1

var 1 Nξ π π= −m I , and hence ( ) ( )
1 2 1

2
| 1

1 1
var 1

1 1 NEξ ξ ξ π π μ
−⎛ ⎞⎡ ⎤ = − ⊗⎜ ⎟⎣ ⎦ −⎝ ⎠

Z I . 

Using the result from Stanek, Singer and Lençina (2004) that [ ]
1

2 1var N NNξ σ ⎛ ⎞= −⎜ ⎟
⎝ ⎠

UY I J , and 

hence 

( ) ( )
1 2 1 1

2 2 2
| 1

1 1 1 11var
1 1N N N NE E

Nξ ξ ξ ξ

π π
σ σ π π σ

π π

′− − −⎛ ⎞ ⎛ ⎞⎛ ⎞⎡ ⎤⎛ ⎞⎡ ⎤ ′= − = 1− ⊗ + ⊗⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎣ ⎦ −⎝ ⎠⎣ ⎦ ⎝ ⎠ ⎝ ⎠⎝ ⎠
Z M I J M I J .  

Combining these expressions,  

( ) ( ) ( )
( )

( )
1 2

2
2 2 2

1 2

1 11 1 11
1 11ξξ

π π π
σ π π σ μ

π π π

⎛ ⎞⎡ ⎤ ⎡ − ⎤⎛ ⎞− − −⎛ ⎞ ⎛ ⎞⎜ ⎟= ⊗ − + − + ⊗⎢ ⎥ ⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ −− ⎝ ⎠⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎣ ⎦⎣ ⎦⎝ ⎠

N
N N

NVar
N N
J

Z I I . 

Identical results are obtained evaluating the variance of the random variables 2Z .   

 We can summarize the model for the population that includes missing data.  The model is 
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given by  

1 1= γ +Z X E  

where 2= ⊗ NX I 1 , and ( )1 π μ
πμ

⎛ − ⎞
⎜ ⎟
⎝ ⎠

γ = .  Notice that in this model, the sum of the parameters is 

equal to the population mean, μ .  A similar model can be expressed for 2Z .  We drop the 

subscripts for Z  in the subsequent development since the two models have the same expected 

value and variance.   

 

3.3. Developing Predictors of the Mean 

 

We use the prediction approach to estimate the population mean.  First, note that we 

can express the population mean as a simple linear combination of the random variables, 

μ ′= g Z , where 2
1

= NN
g 1 .  Also, we can partition Z  into a set of random variables 

corresponding to the sample, IZ  (corresponding to ( )o
IY  or ( )ϒ o

I ), and the remaining random 

variables, IIZ .  We partition ( )′′ ′= I IIg g g  in a similar manner, where ⎛ ⎞= ⎜ ⎟
⎝ ⎠

n
I

n
N n

1
g .  The 

values of the sample random variables will be observed, and correspond to the response for a 

non-missing selected unit, or the value zero for a selected unit where response is missing.  As a 

result, once the sample is realized, μ ′ ′= +I I II IIg z g Z , and the basic problem is prediction of 

′II IIg Z . 

We require the predictor to be linear function of the sample data, ′ Ip Z , to be unbiased, 

such that ( )
1 2ξ ξ ′ ′−I II IIE p Z g Z , resulting in the constraint that ( ) ( )1 1 1n

n
N

π π′ − = − −p 1 , and to 
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minimize the variance, ( )
1 2

var I II IIξ ξ ′ ′−p Z g Z .  Minimizing the variance subject to this constraint 

using Lagrange multipliers and simplifying leads to the best linear unbiased estimator (Lu, 2004) 

given by  

( )
1ˆ

1
n

n
μ

π
′

=
−

1 Y
.  (3.1) 

The denominator, ( )1n π− , corresponds to the expected number of responding sample subjects.  

We refer to μ̂  as the average of the expected respondents.  The numerator is simply the total of 

the realized sample, 
1

n

i
i

Y
=
∑ , using a response of zero for random variables where the response is 

missing.  The variance of the estimator is given by  

( ) ( )
( )2 211ˆvar

1
N n

n N
π π

μ πμ σ
π

− − −⎡ ⎤
= +⎢ ⎥− ⎣ ⎦

. 

 The estimator can be written in a manner that emphasizes the interpretation of predicting 

the un-observed random variables.  We express it as the weighted sum of three terms: the sample 

mean, 
1

1 n

i
i

Y Y
n =

= ∑ ; the predictor of response for a subject not selected in the sample, 1̂P ; and the 

predictor of response for the Nπ  subjects where response is expected to be missing, 2̂P .  Using 

this notation, the estimator is given by  

( ) 1 2
1 ˆ ˆˆ nY N n P N P
N

μ π⎡ ⎤= + − +⎣ ⎦ . 

 There is a simple intuition that corresponds to the choice of predictors.  The predictor of 

response for a subject not selected in the sample who will respond is equal to the average 

response over the sample, and given by 1̂P Y= .  The predictor for subjects whose response will 
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be missing corresponds to the average response of the expected respondents, 2̂ ˆP μ= .  

Combining these expressions,  

( )1ˆ ˆnY N n Y N
N

μ πμ⎡ ⎤= + − +⎣ ⎦ , 

an expression which readily can be seen to be equal to (3.1).  A key feature of this decomposition 

is the ability to interpret terms in the estimator as a sum of realized sample values, and predictors 

of un-observed random variables.  This provides an intuitive guide to the statistical inference that 

links directly to the actual statistical methods.  

 

3.4. The Empirical Predictor 

 

 In practice, we need to know the probability of missing response in order to compute the 

predictor.  A common practice when parameters are unknown is to replace the parameters by 

estimates of the parameters.  The estimators may come as additional data, or directly from the 

sample.  We refer to the resulting predictor as an empirical predictor.   

 In order to estimate the population mean, we need an estimate of π .  We can estimate 

this parameter by the proportion of missing responses in the sample.  Notice that if response 

consists solely of the realized values of ( )o
IY , then we will not be able distinguish whether or not 

response for position i  in the sample is missing, or simply represents a response of zero for the 

selected subject.  As a result, we can not form an unbiased estimate of π  without more 

information.  We assume that such additional information is available.  The additional 

information consists of the realized values, ix  of iM  (or 
1

N

is s
s

U H
=
∑ ) for 1,...,i n= , allowing us to 
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know for each position in the sample whether or not response is missing.  Defining 0n  as the 

number of elements of ( )o
IY  (or ( )ϒ o

I ) where response is missing, we estimate π  by 0ˆ n
n

π = .  

Representing the number of non-missing sample responses as 1 0n n n= − ,  the empirical 

predictor simplifies to  

( )
1

0
11

1ˆ
ˆ1

n
n

i
i

Y
n n

μ
π =

′
= =

− ∑1 Y
, 

equal to the simple mean of the non-missing sample respondents.  The empirical predictor 

simplifies to the intuitive estimator widely used, although rarely motivated in a formal fashion.  

Using the finite population random permutation model approach and the additional data on iM  

or 
1

N

is s
s

U H
=
∑  for 1,...,i n= , this predictor emerges as best.   

 We estimate the MSE by replacing π  by 0ˆ n
n

π = , 2

1

1 N

s
s

y
N =
∑  by 2 2

11

1 n

i
i

T Y
n =

= ∑  and 2σ  by 

( )( )22
1 0

11

1 ˆ1
1

n

i i
i

S x Y
n

μ
=

= − −
− ∑ .  Using these estimators, ( )

2
20 1

0
1

ˆ ˆ n SN nV T
nn N n

μ −⎛ ⎞= + ⎜ ⎟
⎝ ⎠

.  The 

first term in this expression inflates the variance to account for variability resulting from division 

by the expected number of non-missing sample responses, as opposed to the actual number of 

non-missing sample responses.  Although for the empirical estimator, we use the actual number 

of non-missing sample responses, the expression for the MSE still retains this term.  The second 

term is similar to the variance of sample mean under simple random without replacement 

sampling.  The difference is that 2
1S  is an estimate of 2σ  that depends only on non-missing 

sample respondents.   
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3.5.  An Example 

 

 We illustrate the empirical predictor with the voting example.  Suppose that a telephone 

interview survey of 400n =  voters in Amherst, Massachusetts is conducted to estimate the 

proportion of voters who favor same sex marriages.  We assume that the sample is selected based 

on  simple random sampling of the town voter registration list containing 8000N =  registered 

voter names.  We also assume that the probability of response being missing is independent of 

the actual subject’s response for all voters.  

 As a result of the survey, suppose that 1 250n =  responses are obtained, where 200  

( 0ˆ 8μ = 0. 0 ) favor same sex marriages.  The simple sample average is given by 200 0.5
400

y = = , 

while the estimate of the probability of missing response is 150ˆ 0.375
400

π = = .  We construct the 

estimator of the proportion of voters favoring same sex marriages by the sum of the voters 

favoring same sex marriages in three groups, the sampled voters who respond, 

200400 200
400

ny ⎛ ⎞= =⎜ ⎟
⎝ ⎠

; the predicted number of voters who would respond, but were not 

included in the sample, ( ) 2007600 3800
400

N n y ⎛ ⎞− = =⎜ ⎟
⎝ ⎠

; and the predicted number of voters who 

would not respond, [ ] ( ) ( )0ˆ ˆ 8000 0.375 0.8 3000 0.8 2400Nπ μ = = =⎡ ⎤⎣ ⎦ .  Adding the observed 

number of voters favoring same sex marriages in the sample to the predicted number favoring 

same sex marriage who would respond and those who would not respond,  

[ ]0
1ˆ 200 3800 2400 0.8

8000
μ = + + = . 
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When the response is dichotomous, the expression for the MSE simplifies to 

( ) ( ) 0
0 0 0

1 1

1 1 1ˆ ˆ ˆ ˆ1
1 1

nN n nV Y
n N N n n

μ μ μ− −⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠ ⎝ ⎠
, which is given by 

( )0ˆ ˆv 0.0015202 0.000059857 0.00158μ = + = .   

 We compare the expression for the variance with an expression for the variance 

corresponding to the finite population variance where the assumption is made that the sample 

size is equal to the number of non-missing sample responses.  This variance is given by 

2 21
1

1

1ˆ N n
S

n N
σ

−⎛ ⎞= ⎜ ⎟
⎝ ⎠

.  When response is dichotomous, 
( )0 02

1 1
1

ˆ ˆ
1

S n
n

μ μ1−⎛ ⎞
= ⎜ ⎟−⎝ ⎠

, and in our example 

2ˆ 0.0006225σ = .  Simulation studies (Lu 2004) reveal that 2σ̂  is a better approximation for the 

variance of 0μ̂  than ( )0
ˆ ˆV μ .  Using this expression and assuming asymptotic normality, we may 

estimate a 95% confidence interval for response as (0.751, 0.849).   

 

4. Discussion 

 

The simple example illustrates a design based method that frames statistical inference 

as a problem of predicting values not in the sample.  When some response is missing, predictors 

are needed both of the remaining units in the population, and of the sampled units where 

response is missing.  This approach to inference is very similar to the approach advocated by 

Vallient, Dorfman, and Royall (2000) in which optimal predictors are constructed for un-

observed random variables based on a model for a super-population.  Both approaches 

distinguish between the values in a finite population and a set of random variables whose 

realization is the population values.  The difference in the two approaches stems from accounting 
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for the unit labels.  In the super-population approach, labels are ignored.  The starting point is a 

set of random variables that form a super-population and satisfy certain statistical properties, 

such as exchangeability.   The finite population is considered to be a realization of at set of N  

super-population random variables.  The predictors are developed from the super-population 

model, and not from the finite population sampling.  In the survey sampling literature, the 

predictors are referred to as model-based, since their derivation is based on the super-population 

model.   

In contrast, the probability model presented in Section 3 arises directly from the 

sampling.  Units in the population are identifiable, and the labels can be traced through the 

process of describing the missing data mechanism.  This enables a clear accounting and 

interpretation of the physical processes of sampling, and processes that may result in missing 

data.  Unlike the model-based survey approach, the random variables and their properties are 

based solely on the sampling design and do not require additional assumptions.  However, 

similar to the model-based approach, the essential statistical problem is framed as a prediction 

problem, and makes use of the same tools in developing the best linear unbiased predictors as are 

used in the model-based approach.  

The basic design-based prediction approach was presented in the context of simple 

random sampling by Stanek, Singer, and Lençina (2004).  There are several innovative aspects to 

the application of this approach to the missing data problem.  First, identifying the labeled units 

enables a clearer specification of the missing data mechanism.  We have distinguished the 

missing data mechanisms that depend on sample positions (such as interviewers), from missing 

data mechanisms that depend on the labeled unit (such as having an answering machine).  It is 

clearly possible to have more complex missing data models where the missing data mechanism 
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depends on both sample position, i, and unit, s.  Although the development in Section 3 assumes 

that the probability of response being missing is independent and identically distributed, other 

assumptions are possible, and will likely lead to different predictors.   

A second innovative feature of the development is the representation of the problem as 

a double set of random variables.  The two sets of random variables correspond to one set where 

a response will be potentially observed, and a second set consisting of the response values when 

response is missing.  In the first set, realizations of the random variables where response is 

missing have a value of zero; in the second set, realizations of the random variables where 

response is not missing have a value of zero.  Summing these random variables gives rise to a set 

of random variables where there is no missing data.  The idea of expanding the representation of 

random variables for missing data is similar in concept to the expansion of random variables 

considered by Stanek, Singer, and Lençina (2004) used to distinguish prediction of response for a 

unit based on a simple random sample.   

The empirical estimates provide an additional interesting aspect of the development.  

In the context of best linear unbiased predictors in mixed models, empirical estimates are 

commonly constructed by replacing variance components parameters by sample estimators.  

Usually, such substitutions result in an elevated expected MSE for the empirical predictor due to 

additional variance introduced by substituting the estimators for parameters.  In our application, 

the predictor involves a single unknown parameter, π .  Replacing this parameter by the sample 

estimator does inflate the expected MSE.  However, the expected MSE appears to dramatically 

overstate the variability when compared with the variance evaluated from simulation studies.  In 

a sense, substituting 1n  for the sample size reduces the variance by accounting for the non-
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ignorable missing data, since the response is recorded as a value of zero when the sample 

respondent’s response was missing. 

Using finite population sampling models and a prediction approach connects 

estimation and prediction.  This is clearly illustrated in the simple random sampling/missing data 

setting.  The example provides a setting for distinguishing terms commonly used in statistics.  

The term ‘estimator’ is reserved for a statistic that comes close (in terms of having small 

variance) to a parameter.  The term ‘predictor’ is reserved for a statistic that comes close (in 

terms of having small mean squared error) to a random variable.  Since we define a parameter as 

a linear combination of population values, but then define a random permutation of these values 

as a set of random variables, the parameter has an equivalent definition as a linear combination 

of random variables.  This process implies that an estimator of the population mean can be 

interpreted as a predictor of the linear combination of random variables not included in the 

sample.   

The design-based prediction approach to finite populations can be extended to other 

situations.  Predictors of realized random effects have been developed by Stanek and Singer 

(2004) in the context of two stage sampling with response error.  Their development is limited to 

populations with equal size clusters, but the methods can be extended.  Additional extensions 

have been made to settings where there are auxiliary variables associated with each unit in the 

context of simple random sampling (Li 2003; Li and Stanek, 2004).  These extensions begin to 

develop design based methods that may be useful for modeling survey data.  Other extensions, as 

for example to non-ignorable missing response mechanisms, remain to be explored.   
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