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Two Stage Cluster Sampling and Random Effects
Ed Stanek

1. FINITE POPULATION
Frames
Labels
Expected Response
Response
Notation and terminology

Expected Response: vy, s=1,..,N andforeach s; t=1,..,M

Response: Yo = Yo + Wy, k=1,.,r, index of order of measure
Assumptions:
E(W,)=0 forall s=1..,N;t=1..,M; k=1..r,.

var(Wy )=o3 forall s=1,.,N; t=1..,M; k=1..,r,.
var (W, W,..)=0 forall s=1,..,N;s*=1..,N; t=1..,M;t*=1..,M and

stzs*t*, and forall k=1...,r,, k' =1,...I,..
Parameters:
1 M
= Ya 4= Zus,ﬁ — gty and &, =y, - 1, SOthat y, = u+ S+,
t= t=1
(72=—1 i(lu _;U 1 i y o =Lii02 02=ii0'2
N _1S=l ° M 1t=1 * S 1 ' NM s=1 t=1 s ¢ N s=1 s
2
and o2 =02 -2e
M

Additional notation:

DemeU ((Us)):(uil Ui2 UiN)” U(js):((ugts))):(ugi) UESZ) UE;}?)'

W=((W)) =(W, W, o W), W= (Wy))= (W Wi - Wiy)
2. SIMPLIFICATIONS

Assume k =1,..
response)

L r,=1forall s=1..,N;t=1..,M sothat k =1. (1 measure of
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2

Note: If k=1,...,r, and r, >1, we could define Y_, :iiYstk and var(Y,,)=—* =5,

"1 Tst
rst k=1 rst

so that Y, = y, +W,, where W, = iiwﬂk , E(W,,)=0 and var(W,, ) =55 . Thus, with

rst k=1
suitable definitions, the model we discuss is more general.

3. PERMUTATION

a. Assume the clusters and subjects in clusters are permuted.
b. Assume response error represents measurement error on the subject with r, =1 for all

s=1..,Nandt=1..M,.
c. Assume M, =M forall s=1,..,N.

S| S

M
e V =SUGy v gl
Define, Y, _;ujt Vo, Yy =0y

Y =((Y5))=Y+W

Y = vec((y +W) ® U(S)'j(U’ ®I, )) = ((U ®I, )®(y+ W)’)vec(eNa U(S)’)

s=1 s=1
N M
Yij = Zzuisu E:)yst
s=1 t=1
N M
W|;< = ZZUISU EtS)\Nstk
s=1 t=1
Yi = ((Yij )) = (Yil Y.z Y.M )I

To summarize,
Y =Xu+ZB+(E+W')
where X=1, ®1,, and Z=1, ®1,,.
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4. EXPECTED VALUE AND VARIANCE

& Subscript representing expectation with respect to permutations of the clusters.
g, Subscript representing expectation with respect to permutations of units in a cluster.
& Subscript representing expectation with respect to replication.

Expected Value:

E... (Y) =Xy

Variance:

2
o

var,.. (Y')=(o? +02 )1, +07 (1, ®J,, )—WJNM

5. REARRANGING AND COLLAPSING THE RANDOM VARIABLES

The random variables in Y~ correspond those that are commonly used. We rearrange the
random variables into those that are in the sample and remainder. It is also possible to collapse
the random variables to sample and remainder PSU totals. We note this fact, but do not
introduce additional notation to illustrate it here.

. . ) L
To arrange the random variables into a sample and a remainder, let L =( ' j
Y, . ,
—= |=LY where L =(L; :L’”),L,:[In 0 )@(Im L0 jand
Y, | nx(N-n) | mx(M-m)

1
(In 0 ]@( 0 §IMm)
{ nx(N-n) (M—m)xm |
((N—(r)l)xn 3 INn)®IM

Y * - - *
In general, we represent the result as [—':J =LY . Using properties of Y , we evaluate
1

LII =

E i) _(X a and var X'— = var Al +0’l1 This results in the following:
St Y;: X“ 616283 Y:: &é, Y“ r o NMm .
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X 1,, Y VvV, Vv :
“Ll=l-™-land var,, | <= (=] 0 MLV =6, +0 (1,00, - 2T,
XII 1NM -nm 5% YII VII,I VII N

2
Vi :VI’I,I =o” (In ® J | 0 )—O-— J , and
|

N nmx(NM-nm)

PN I 0 o’
) ®JM N NM-nm *

6. TARGET PARAMETERS, RANDOM VARIABLES, AND TERMINOLOGY

We assume that there is an interest in a ‘target’ that can be defined as a linear
combination of the expected value (over response error) of the random variables. We use the
sample data to estimate/predict the target.

We only consider inference for a single ‘target” (not joint targets).

*

: Y, . Y,
We represent the random variables by ( '*]. We define a ‘target’ as P = g’( ' ] where

1 1
YI* XI e H ' ' i ' i
E... v = o and partition g representing g'=(g, g ) sothat P=g|Y, +g,Y, .
1 1
Since Y, will be realized after selecting the sample and observing the results, the basic inference
problem is prediction of g}, Y, . Thisis true when P is a fixed constant, and when P isa
random variable. For this reason, we use the term ‘predictor’ when discussing inference.

. . R
For the random variables that are rearranged (see a) above), we define g'=b’ ® -

where b =(b,,---,b,)" are constants. In particular, we limit discussion to b =e,, where e,

denotes an N x1 vector with a value of one in position i, and zero elsewhere. When random
variables are collapsed, g'=e;.

7. DEVELOPING THE BEST LINEAR UNBIASED PREDICTOR (BLUP)

We define the BLUP of P as P, where P satisfies the following criteria (see Royall,
1976):

Linear in the sample: P =(g| +a')Y;

Unbiased: S (I3 - P) =0

Minimum MSE: var

558, (|3 - P) is minimized.
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In order to develop the BLUP of P, we first present expressions for P-P and its
variance. First, note that

YI
P=P=((gi+) | & |-&) Y
YII
YI _ VI VI,II
We represent var, = . Then
YII VII,I VII
_YL VI* VI VI,II
var, . . Y,_ =V, vV, VvV,
YII VII,I VII,I VII
Let us define V, =V, +o’1,_ and V., =c’1__. Then
Y ) (10 Vo, 00
—=— Vi V)1 10
var... | Y, |=/1 0 ‘ + 0 0 0
e VIII VII 0 0 1 '
Y, 01 ' 0 00

The Unbiased Constraint:

~ X
We can expand the unbiased constraint: E_, . (P - P) =(a' -g| )(XI ju , such that

S (I3 - P) =(a'X, —g, X, )e. Inorder for this expression to equal zero for any value of a,

the unbiased constraint will be always be satisfied when a’X, —g, X, =0. This is introduced as
a constraint using Lagrangian multipliers when minimizing the MSE.

Finding the Minimum MSE:

Notice that
) Vi Vi Vi )g+a
Val’fR(P—P):((g; +a’) : -g : _g;I) \7 V. Vi & | or
Vii Vi 1 -8
- V, V a .
Var., (P— P):(a' -8\ )(VnI. ‘;“" j[—g“ j+(g] +2') Vg (g, +a).

*

Expanding this expression, var(l3 - P) =a'Via+2(gVy -8V, )a+ g'\V,g, +g Vg, -

Including the constraint via a Lagrangian multiplier, we seek to find the value of a that will
minimize
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f(a,k)=a’Vra+2(g’,V;, -2V, )a+2(a'X, -2,X, )

+g, V8 +g:V;,g,
Differentiating with respectto a and A,

o (a.3) =2Vja+2(Vyg -V, g, )+2X,A and
oa '
of (a, A , ,
E?)\. ):2(X,a—X”g,,).

To find the value of a that minimizes f (a,1), we set these derivatives to zero simultaneously,
and solve for a. The estimating equations are given by

of (a,i)
1 Oa :(V'* X, j[z}]_(_v’;gl +V|,||g||]:(0nj
2| of (a,) | (X0 0 X,g, 0
V., X \(a Vv
or equivalently, by ', ' (A]:[ Vmg.’+V.,ug..j.
X, 0 )\A X, g,

To solve this equation for a, we make use of results on the inverse of a partitioned

_ Al!B L A +A'BQ'CA? | —A7BQ™
matrix X = ——.—— ,suchthat X =| ———--—5--—5---- T ——————— — | where
|

C D
Q=D-CA" lB. As a result,

Vi X

!

-1
Coo vt [vEovex (x VX ) X,V VX, (x/vix,)
[X| 0 J .

-1 -1
:|:VI T-viX, (XI Vv _lXI) X,V —1}(_‘,ng| +Vi.u8, )+V| X, (XI Vi7X, ) X8 -

We can now express the best linear unbiased predictor. Recall thatP =g,"Y, +g,Y,,,
and we predict P by P =(g| +a’)Y, , where the best predictor replaces a by a. Letus

R
define & :(X,'V,”X,) X,'VY. Then
-1 -1
a'y, :(_g;VRI +8, Vi )|:VI Y -VX, (XI Vv 71X|) X'V, :|+g:IXII (XI Vv 71X|) XV,
:_g;V;Vltl(Yl*_Xl&')"'g;l [XHOA""VHJVFL1 (YI*_XI&)]

As a result, the best linear unbiased predictor is given by
P= g|’ |:YI* _VI:IVI*_l(YI* _XIO’E)}—l—g,II |:X||0A‘+V||,|V|*_1(Yl* _XI&):| :
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We can express the predictor in a slightly different manner by substituting V, =V, -V,
resulting in

P=g/|X,a+V,\V (Y -X,@)[+g [ X,a+V,, V] (¥ -X,4)].
Example 1.
Target: iuisys when i<n

s=1

~ 1' * Wk * ~ * * * J
Then @ =—"Y =Y, Y, -X,a=P_ Y, V,V'P_ ={ptlnm +(1-p )k (In ®—mﬂpnm,
m

nm
(M J)
. 1 o= ? . mo
and V, ,V,'P_=k"| " m__|P,where p =———, k =— 02 —» and
’ o o, +0, mo +(ae +ar)
(N=n)Mxnm

P, =1, ——. Using these expressions, the predictor simplifies when i <n to
a

= (e (19 4 Lo ) TR [ Moo (1,77 4R,

M
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