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ABSTRACT 

We develop design-based estimators of the population mean using auxiliary information 

under simple random without replacement sampling by extending the random permutation model 

of Stanek, Singer and Lencina (2004) and Stanek and Singer (2004).  A key step in the 

development is representing the population mean, defined as a non-stochastic average of unit 

values, as the sum of random variables constructed from a random permutation of the 

population.  Using methods similar to those in model-based approaches, the random variable 

representing the sum of non-sampled units is predicted to form a design-based estimator of the 

population mean.   

The random permutation model is extended by the joint permutation of the response and 

auxiliary variables, with auxiliary information incorporated through centering the auxiliary 

variables on their respective means. Auxiliary values are assumed to be known for all population 

units. The estimators are required to be linear functions of the sample, unbiased and have 

minimum mean squared error.  The estimators are identical to model-assisted and calibration 

estimators   However, the results provide the building blocks for extending the design-based 

random permutation model theory to include covariates in more complicated sample designs.  

This theory has already been extended to predict realized random effects in a mixed model using 

similar design-based methods applied to a random permutation model for a clustered population.  

The results developed here broaden the scope of the theory by directly extending it to include 

covariates.  The concordance of results with other less systematic approaches is an added 

appeal of the methodology.   

 

Key words:  auxiliary variable, design-based inference, prediction, finite sampling random 

permutation model, simultaneous permutation 

 

Running title: Random Permutation models with auxiliary information
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1. INTRODUCTION 

Estimators can be made more precise by accounting for auxiliary information such as 

gender, age, income and chronic disease-bearing history that are partially or completely known 

in a population. Methods of improving estimation with auxiliary information have been discussed 

in a model-based approach (Bolfarine and Zacks 1992; Valliant et al. 2000) and using model-

assisted or calibration methods (Cassel et al. 1977; Cochran 1977; Särndal and Wright 1984; 

Deville and Särndal 1992; Särndal et al. 1992).    In a model-based approach, the result is the 

best linear unbiased predictor (BLUP) (Ghosh and Rao 1994; Rao 1997).  The model-assisted 

approach combines ideas from model-based and design-based approaches, resulting in 

generalized regression (GREG) estimators.  The calibration approach produces a weighed 

estimator with weights that minimize the distance to benchmark weights, while “calibrated” to 

known population quantities on some set of auxiliary variables.   

The actual sample design plays no role in inference based on the model-based approach.  

Additional superpopulation model assumptions beyond the sample design are required for 

development of GREG estimators.  The calibration approach lacks an integrated theoretical 

framework.  All of these approaches require additional assumptions, or lack an integrated theory 

that builds simply on the sample design. 

 We develop a design-based estimator of the population mean that accounts for auxiliary 

information.  The development extends use of the random permutation model for simple random 

sampling (SRS), and two stage cluster sampling (Stanek, Singer and Lencina (2004), Stanek 

and Singer (2004)) to account for auxiliary variables. The method avoids the limitations of the 

superpopulation model approach, but takes advantage of some of the optimization tools used in 

developing predictors with superpopulation model assumptions. Beginning with a vector of 

responses for each subject in a finite population, a SRS of subjects is represented by a random 

permutation probability model that permutes subject’s response vectors.  Auxiliary information is 
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incorporated through a simple linear transformation.  The results provide a direct design-based 

method to account for auxiliary information when estimating the population mean.   

 This paper is organized as follows.  We first present definitions and notation, and 

introduce the random permutation model.   We next present a simultaneous random permutation 

model  in a simple setting with a response and one auxiliary variable, and use it to derive the 

best linear unbiased estimator (BLUE) of the population mean.  Subsequently, we extend the 

results to scenarios with multiple auxiliary variables. We conclude by illustrating the method with 

an example, and include results from a small scale simulation evaluating empirical estimators. 

 

2. DEFINITIONS AND NOTATION 

Let the population consist of N  subjects labeled 1,2, ,s N= … , where we assume the 

labels are non-informative, serving  only to identify the subjects.  Associated with subject s  is a 

non-stochastic potentially observable response vector, ( )s sy ′′x , where sy  denotes the 

response of interest, and ( )( )s ksx=x  is a 1p×  vector of auxiliary variables.  We represent the 

population mean by the vector of means, ( )y xµ ′′µ , where ( )( )kx xµ=µ  is a 1p×  vector.  The 

population variance is defined by the ( ) ( )1 1p p+ × +  matrix 
1N

N
− Σ , where  

2
y y

y

σ⎛ ⎞′
⎜ ⎟=
⎜ ⎟
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x

x x
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σ Σ
, 

( )1 2 py yx yx yxσ σ σ ′
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3. THE RANDOM PERMUTATION MODEL  

We define a random permutation model as the set of all possible permutations of subjects 

in the population, where each permutation is equally likely.  We represent a random permutation 

by the sequence of 1,...,i N=  random variables, referring to a random variable in the 

permutation by its position, iY .  A simple random sample of size n  is defined as the first 

1,...,i n=  variates in a random permutation. Following Stanek, Singer and Lencina (2004), we 

explicitly represent these random variables in terms of a set of indicator random variables isU , 

1,2, ,i N= … , that have a value of one if subject s  is in position i  in a permutation, and zero 

otherwise.  Using this notation, response for the subject in position i  in a permutation is 

represented by the random variable 
1

N

i is s
s

Y U y
=

= ∑ ; using vectors, i iY ′= U y  where 

( )1 2i i i iNU U U ′=U " represents a vector of random variables that selects a subject in 

position i  and ( )( )sy=y  represents the population response vector.  Defining 

( )1 2N N N×
′=U U U U" , the random variables representing a permutation of response are 

given by =Y Uy .  Similar vectors can be defined to represent a permutation of auxiliary 

variables, k k=X Ux , 1,...,k p= .  The vector and matrix notation simplifies representation of the 

problem and development of the expected value and variance of the vectors. 

We use properties of the indicator random variables to evaluate the expected value and 

variance of the random variables.  Taking expectation over all possible permutations,  

( ) 1
isE U

N
=  for all 1,..., ; 1,...,i N s N= = .  As a result, ( ) ( ) 1

i i N yE Y E
N

µ′ ′= = =U y 1 y  for all 

1,...,i N= , where N1  is an 1N ×  column vector.  In a similar manner, ( ) ( )* *
1

1is i sE U U
N N

=
−
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when *i i≠  and *s s≠ , ( )2 1
isE U

N
=  when *i i=  and *s s= , and ( )* * 0is i sE U U =  otherwise.  

Using these expressions, we can show that ( ) 21var i y
NY

N
σ−

=  for all 1,...,i N= , and 

( ) 2
*

1cov ,i i yY Y
N
σ= −  when *i i≠ .   

We combine these results to express the expected value and variance of a random 

permutation using vector notation.  As a result, ( ) y NE µ=Y 1 ; and ( ) 2
,var y N Nσ=Y P ,  where 

1
,a b a ab−= −P I J , NI  is an N N×  identity matrix, and N N N′=J 1 1 .  Similar expressions apply to 

auxiliary variates.  In addition, ( ) , ,cov ,
kk y x N Nσ=Y X P  and for *k k≠ ,  

( )
** , ,cov ,

k kk k x x N Nσ=X X P .  

 

4. SIMULTANEOUS RANDOM PERMUTATION MODEL 

We next represent random variables arising from the random permutation of response 

and auxiliary variates simultaneously.  For simplicity, we first assume that there is a single 

auxiliary variable (i.e. 1p = )  corresponding to the subject’s age (which we represent by sx ).   

Age is assumed to be known for all subjects in the population. 

The simultaneous random permutation model is defined by concatenating the 

permutation vectors for response and the auxiliary variates.  The resulting model is an example 

of a seemingly unrelated regression model  (Zellner 1963)  with both regressions corresponding 

to simple mean models such that 

N y

N x

µ

µ

⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟= +⎜ ⎟

⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

= +

1 0Y
E

0 1X

Z Gµ E

     (1) 
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where  ( )′′ ′=Z Y X ,  2 N= ⊗G I 1 , ( )y xµ µ ′=µ , and where ⊗ denotes the Kronecker 

product (Graybill 1976).  In this model, ( )E =Z Gµ  and  ( ) ,var N N= ⊗Z Σ P .  The 

mean age, xµ , is known since age is assumed to be known for all subjects.  This implies that the 

N  random variables arising from permuting the auxiliary variable are constrained by 

1

1 N
i xi

X
N

µ
=

=∑ .  We eliminate xµ  from model (1) by subtracting 
N xµ

⎛ ⎞
⎜ ⎟
⎝ ⎠

0
1

 from both sides (which 

is equivalent to multiplying each term in the model by 
,

N

N N

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

I 0
R

0 P
) .  Representing the 

elements of *X  by *
i i xX X µ= − , the transformed model is given by   

*

*

* * *

N

y

N

y

µ

µ

⎛ ⎞⎛ ⎞
⎜ ⎟= +⎜ ⎟

⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

= +

1Y
E

0X

Z G E

    (2) 

where * =Z RZ  and * =G RG .  Since ,N NP  is idempotent, ( )* *
yE µ=Z G , ( )*

,cov N N= ⊗Z Σ P .  

Model (2) is equivalent to model (1) with the auxiliary variate centered at zero.   

 

5. SAMPLING AND PARTITIONING THE RANDOM VARIABLES 

   We represent random variables for a SRS of size n  by the first n  elements of the 

random permutation vectors.  The sampled ( )*
IZ and remaining ( )*

IIZ  portions of *Z  can be 

obtained by pre-multiplication by 
( )( )

( )( )
2

2

n n N n

N nN n n

× −

−− ×

⎛ ⎞⊗
⎜ ⎟= ⎜ ⎟⎜ ⎟⊗⎝ ⎠

I I 0
K

I 0 I
, i.e., 

*
*

*
I

II

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

Z
KZ

Z
.  Since K  is 

non-stochastic, it follows that ( ) ( )*
I y n nE µ ′′ ′=Z 1 0 , ( ) ( )*

II y N n N nE µ − −
′′ ′=Z 1 0 , and 
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*
,

*
,

cov I I III

I II IIII

⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟′⎝ ⎠⎝ ⎠

V VZ
V VZ

, where ,I n N= ⊗V Σ P , ( ),II N n N−= ⊗V Σ P , 

( ), ,
1

I II II I n N nN × −
′= = − ⊗V V Σ J ,  where ( ) n N nn N n −× −

′=J 1 1 .  Consequently, the partitioned model 

that reflects SRS sampling can be represented as 

* *
*

* *

I I
y

II II

µ
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= +
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

Z G
E

Z G
,     (3) 

where ( )*
I n n

′′ ′=G 1 0  and ( )*
II N n N n− −

′′ ′=G 1 0 .  

6. PARAMETER OF INTEREST 

 We assume that the parameter of interest is the population mean of the response variate, 

which is defined as a linear function of the permuted random variables, namely, 

1 1

n N
y i ii i n

c Y c Yµ
= = +

= +∑ ∑ , where 
1c
N

= , or equivalently as,  

* * *
y I I II IIµ ′ ′ ′= = +C Z C Z C Z ,    (4) 

where ( )N Nc ′′ ′=C 1 0 , ( )I n nc ′′ ′=C 1 0  and ( )II N n N nc − −
′′ ′=C 1 0 .  After sampling, only the 

second term in the right hand side of (4) will be unknown; thus, estimating yµ , is equivalent to 

find a predictor of  *
1

N
II II ii n

c Y
= +

′ = ∑C Z .  We develop the best linear unbiased predictor (BLUP) of 

*
II II′C Z , and refer to the estimator of yµ  as the BLUE of yµ . 

 

7. BLUE OF A LINEAR FUNCTION  

 We require the predictor of *
II II′C Z  to be a linear function of the sample, 

* *
1 1

n n
I yi i xi ii i

w Y w X
= =

′ = +∑ ∑w Z , to be unbiased, i.e., ( ) ( )* *
I II IIE E′ ′=w Z C Z , and have minimum 

MSE.  The estimator of yµ is given by  
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( ) ( )* *
1 1 1

n n n
I I i yi i xi ii i i

P c Y w Y w X
= = =

′ ′= + = + +∑ ∑ ∑C w Z .   (5) 

The unbiased constraint implies that * * 0I II II′ ′− =w G C G .  The variance of P  is 

( ) ,var 2I I II II II II IIP ′ ′ ′= − +w V w w V C C V C .   With such setup, the prediction theorem of Royall 

(1976) can be applied.  The minimum variance unbiased estimator is obtained by minimizing the 

function 

( ) { }* *
,2 2I I II II I II II λ′ ′ ′ ′Φ = − + −w w V w w V C w G C G ,       (6) 

where λ  is a Lagrangian multiplier, resulting in  

( ) ( )1
1 * * 1 * * * 1

, ,ˆ I I II I I I I II I I I II II

−
− − −⎧ ⎫′ ′ ′= + −⎨ ⎬
⎩ ⎭

w V V G G V G G G V V C .    (7) 

After simplification, (7) reduces to, 

    
11ˆ n

f
n β

−⎛ ⎞
= ⊗⎜ ⎟−⎝ ⎠

w 1 ,                                               (8) 

where f n N= , 2
xy xβ σ σ= .   Consequently, the estimator and its variance are 

( )

( ) ( )

( )

1 1

1ˆ
1

1
1

n N

i I I x
i i n

I I I x

I I x

P Y Y X
N f

fY f Y X
f

Y X

β µ

β µ

β µ

= = +

⎧ ⎫⎛ ⎞
= + − −⎨ ⎬⎜ ⎟−⎝ ⎠⎩ ⎭

⎡ ⎤
= + − − −⎢ ⎥−⎣ ⎦

= − −

∑ ∑

   (9) 

and 

( ) ( )( )
2

2ˆvar 1 1 yP f
n
σ

ρ= − − ,     (10) 

where xy x yρ σ σ σ=  is the correlation coefficient of Y on X , and  IY  and IX  are the sample 

mean of the response variable and the auxiliary variable, respectively.  This expression is similar 
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to the expressions commonly seen in linear regression estimators, but includes a finite 

population correction factor.  

 The expressions in equation (9) have interesting interpretations.  The first expression is 

divided into the sum of random variables in the sample and a predictor of the random variables in 

the remainder.  Since the weighted total of the sample and remainder random variables equals 

the population mean, it is clear that for a realized sample, we simply substitute the values 

observed for the sample random variables in the estimator.  Rather than predicting the value of 

each remaining random variable by the sample mean, IY , we include an adjustment  that 

accounts for the auxiliary variable.  The adjustment ‘shrinks’ the observed difference between the 

auxiliary sample mean and the population auxiliary mean.  For example, if the value observed for 

the auxiliary sample mean, IX , exceeds the population mean, xµ , and the response and 

auxiliary random variables are positively correlated, we may anticipate that the sample mean, IY  

will also exceed the population mean yµ .  The predictor of the remaining random variables 

compensates for this over estimation of the sample random variables.  The correction is 

proportional to the auxiliary difference, I xX µ− , and weighted by the regression coefficient, β  

inflated by one over the finite population correction factor 1 f− .    

 The second expression in equation (9) is very similar to the BLUP of a realized cluster 

mean based on a mixed model fit to a two stage cluster sample.  The similarity provides an 

intuition connecting BLUP in the two stage sampling context to adjustments for auxiliary 

variables in SRS.  In the context of two stage cluster sampling with equal size clusters, the BLUP 

of a realized cluster mean under a two stage random permutation model is given by  

( ) ( )ˆ 1
1i i i iT fY f Y Y Y

f
β⎡ ⎤

= + − − −⎢ ⎥−⎣ ⎦

�� �
� , 
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where /f m M=�  is the common sampling fraction of units in clusters, iY  is the sample mean of 

the realized cluster, Y  is the average of these means over sampled clusters, and 

( )
( )

2

2 2

1

1
e

e

f

m f

σ
β

σ σ

−
=

+ −

�
�

�  is a function of the variance between clusters, 2σ , and the average 

variance within clusters, 2
eσ  (see Table 1, Stanek and Singer (2004, p1125)).  The predictor is 

the sum of two terms.  The first term substitutes the values observed for the sample units in the 

realized cluster in the predictor.  The second term predicts the contribution of the remaining units 

in the realized cluster by adjusting the realized cluster sample mean.  The adjustment is 

proportional to the difference between the realized cluster sample mean, and the overall mean.   

 The similarity of the BLUP of a realized cluster mean in two stage cluster sampling to the 

estimator of the population mean with auxiliary information in SRS is self-evident.  The difference 

between the sample mean for the auxiliary variable and the population mean in SRS is replaced 

by the difference between the realized cluster sample mean and the overall mean in two-stage 

cluster sampling.  The regression coefficient relating the response to the auxiliary variable in 

SRS is replaced by a coefficient that is a function of the within and between cluster variance 

components. 

 

8. EXTENSION TO CASES WITH MULTIPLE COVARIATES 

Extension of the above results to scenarios with multiple auxiliary variables is 

straightforward. Suppose p  auxiliary variables are available for use in estimation. The matrix of 

random variables representing a joint permutation of a response variable and the p covariates is 

given by ( ) ( )1 1p p=" "U y x x Y X X .  A simultaneous random permutation model 

can be defined similar to (1), with ( )1 pvec=Z Y X X"  and ( )1p N+= ⊗G I 1 .  It follows that 

( )E =Z Gµ , and that ( ) ,cov N N= ⊗Z Σ P .   When auxiliary means kµ , 1, ,k p= … , are known, a 



auxiiary_2005v3_noEndNote-ejs.doc,9/2/2005   10

similar centering transformation can be applied to Z , such that *

,

N

p N N

⎛ ⎞
= ⎜ ⎟⊗⎝ ⎠

I 0
Z Z

0 I P
.  A 

reparameterized model incorporating known auxiliary information has a form identical to Model 

(2), but where ( )*
N Np

′′ ′=G 1 0 .   With these differences, a linear unbiased minimum variance 

estimator can be derived following the same steps in Section 7 (Appendix 1).  The unique 

solution for the vector of coefficients w  is  

11ˆ n

f
n

−⎛ ⎞
= ⊗⎜ ⎟−⎝ ⎠

w 1
β

, 

where ( )1
1 2X Xy pβ β β− ′= =β Σ σ " , 1 2, , ,k p= … .  Accordingly, the estimator and its 

variance are 

 
( ) ( )

( )

ˆ 1
1I I I x

I I x

P fY f Y
f

Y

′⎡ ⎤
= + − − −⎢ ⎥−⎣ ⎦

′= − −

β X µ

β X µ

    (11) 

and 

 ( ) ( )( )
2

2ˆvar 1 1 y
yXP f

n
σ

ρ= − − ,      (12) 

where IY  is the sample mean of the response variable and IX  is the vector of sample means of 

the p  auxiliary variable, and 2 1 2
yX Xy X Xy yρ σ−′= σ Σ σ  is the squared multiple correlation coefficient 

of  Y on *X .  Notice that the only difference between (12) and (10) is the multiple correlation 

coefficient 2
yXρ  instead of 2ρ .  This expression is similar to the expressions commonly seen in 

multiple linear regression models (Graybill 1976), but includes a finite population correction 

factor. Results (11) and (12) are also the same as difference estimators with optimal coefficients 

(Montanari 1987) and the GREG estimator (Särndal et al. 1992).    
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9.  EMPIRICAL ESTIMATES 

The estimator in equation (9) and (11) are a function of the regression coefficients, which, 

in turn, are a function of variance components in the population.  In practice, although XΣ  may 

be known, Xyσ  will need to be estimated.  Sarndal et al. (1992, p229) recommends estimating 

both terms.  When p=1, the estimate of β  is given by 1 ˆ ˆ/xy xxb σ σ= , where 

( )( )1

1ˆ
1

n
xy i I i Ii

Y Y X X
n

σ
=

= − −
− ∑  and ( )22

1

1ˆ
1

n
x i Ii

X X
n

σ
=

= −
− ∑ .  An alternative estimator 

uses the known population variance of X  to estimate β  by 2 ˆ /xy xxb σ σ= .   

We conducted a small scale simulation study to compare different empirical estimators in 

the context of a simple problem where there is interest in estimating the smoking rate y yµ π=  in 

a population of size N based on a SRS with both smoking status and gender are recorded on 

sample subjects.  We assume the response variable is an indicator of smoking status ( 1sy =  if 

subject s is a smoker, and zero otherwise), and the auxiliary variable is an indicator of male 

gender ( 1sx =  if subject s is male, and zero otherwise).  We also assume that the proportion of 

males in the population, x xµ π= , is known.  By including the gender status of the sample 

subjects, theoretically, we can reduce the variance of the estimate of smoking prevalence in the 

population over the simple sample proportion, with the percent reduction given by ( )2100 1 ρ− .  

In practice, since the regression parameter is not known, some of the reduction in the MSE is 

lost due to uncertainty in the regression coefficient. 

The simulation study generated a series of hypothetical populations of sizes 50, 100, 200, 

400, 800 and 1,600; each with an auxiliary variable representing 50% men ( 0.5xπ = ).  In all 

populations, the overall prevalence of smokers is assumed to be 40% ( 0.4yπ = ).  The 

prevalence of smoking in men ranged from 40% to 68% translating into a relative risk of smoking 
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for men ranging from 1 to 5.67.  We evaluated the estimators by comparing the average MSE 

over 25,000 independent simple random samples.  To compare the MSE of the estimators, we 

expressed the MSE of estimators that account for gender as a percentage of the MSE of the 

estimator corresponding to the simple sample smoking prevalence.  Three estimators are 

compared, differing by whether 1b , 2b , or β  is used for the regression coefficient.   

The simulation results are illustrated in Figures 1 and 2 and summarize the reduction in 

MSE that may result by accounting for auxiliary information.  Figure 1 presents results when 

N=100 and n=25.  Results were very similar to those in Figure 1  with larger N and larger size 

samples.  Figure 2 presents results when N=50 and n=25.  In both figures, notice that although a 

reduction in the MSE will almost always occur when the regression coefficient is known after 

accounting for auxiliary information.  In the simulation, the MSE of the estimator based on 2b  

was slightly lower but basically equivalent to the estimator based on 1b  in all settings.  Using the 

empirical estimators, a reduction in the MSE will not occur unless there is a sufficiently large 

difference (measured here by the relative risk of smoking for males) in response by the auxiliary 

variable.  From Figure 1, a reduction in the MSE will occur when RR>1.75, while from Figure 2, a 

reduction will occur when RR>1.8.   

 

10.  EXAMPLE 

As a simple example, suppose there is interest in estimating the smoking rate y yµ π=  in 

a population of size N based on a SRS with both smoking status and gender recorded on 

sample subjects.  We assume that the proportion of males in the population, x xµ π= , is known, 

and represent the sample estimate of the proportion smoking as ˆI yY π= , the proportion male in 

the sample as ˆI xX π= , and the proportion of male smokers in the  sample as ˆxyπ .  With this 

notation, ( )21 ˆ ˆ ˆ1y y y
N

N
σ π π−

= − ,  ( )21 ˆ ˆ ˆ1x x x
N

N
σ π π−

= − , ( )21 1x x x
N

N
σ π π−

= − , and 
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1 ˆ ˆ ˆ ˆxy xy x y
N

N
σ π π π−

= − .  Using these estimators, we estimate β  by 
( )1

ˆ ˆ ˆ
ˆ ˆ1

xy x y

x x

b
π π π
π π

−
=

−
 or 

( )2

ˆ ˆ ˆ
1

xy x y

x x

b
π π π
π π

−
=

−
 and estimate ρ  by 

( ) ( )
ˆ ˆ ˆ

ˆ
ˆ ˆ1 1

xy x y

x x y y

π π π
ρ

π π π π

−
=

− −
.  Substituting these 

expressions into the estimator in (9) using 2b  results in  

  

( ) ( ){ }

( ) ( )

2 2
1ˆ ˆ ˆ ˆ

ˆ ˆ ˆ
ˆ ˆ

1

y y x x

xy x y
y x x

x x

P n N n Nb
N

π π π π

π π π
π π π

π π

⎡ ⎤= + − − −⎣ ⎦

⎛ ⎞−
= − −⎜ ⎟⎜ ⎟−⎝ ⎠

, 

with variance estimated by ( ) ( )( )
2

2 ˆˆˆ ˆvar 1 1 yP f
n
σ

ρ= − − . 

 As a particular application, suppose that 100N =  and 20n =  so that 0.20f = , and 

assume that half the population is male, i.e. 0.5xπ = .  Among the sample, suppose further that 

thirty percent smoke ( ˆ 0.3yπ = ), sixty percent are male ( ˆ 0.6xπ = ), and that twenty-five percent 

of the sample subjects are male smokers ( ˆ 0.25xyπ = ). Using this information, 

( )
( )2

0.25 0.6 0.3
0.28

0.5 1 0.5
b

−
= =

−
, 

( )
( ) ( )
0.25 0.6 0.3ˆ 0.3055

0.5 1 0.5 0.3 1 0.3
ρ

−
= =

− −
, and the proportion of 

smokers in the population is estimated by 

( ) ( ) ( ){ }

( ){ }

{ }

2
1ˆ 6 80 0.3 100 0.28 0.6 0.5

100

1 6 24 28 0.1
100

1 6 21.2
100

0.272

P = + − −⎡ ⎤⎣ ⎦

= + −⎡ ⎤⎣ ⎦

= +

=

. 
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Thus, rather than using the sample estimate of the smoking prevalence (i.e., ˆ 0.3yπ = ),  the 

estimate of smoking prevalence accounting for gender is given by ˆ 0.272P = .  To form this 

estimate, the predicted number of smokers among the non-sampled subjects is reduced from 24 

to 21.2 to account for the larger percentage of male subjects in the sample (relative to the 

percentage of males in the population).  The same estimate can be obtained by directly applying 

the regression results,  ( )2 2
ˆ ˆ ˆy x xP bπ π π= − −  or ( )2̂ 0.3 0.28 0.6 0.5 0.272P = − − = , but this 

expression does not reveal the essential prediction of non-sampled random variables underlying 

the method development.  Using 1b  to estimate β , 1̂ 0.271P = , a result that corresponds to the 

simple weighted average prevalence of smoking, using population gender weights.  These 

estimators are identical to “post-stratified” estimators of prevalence rate, as discussed in 

calibration (Deville and Särndal 1992) and model-assisted approaches (Särndal et al. 1992). The 

estimated standard error is given by ( )2̂ˆvar 0.3922P = .  The standard error is 2ˆ1 0.9522ρ− =  

of the estimated standard error based solely on the sample (given by 

( ) ( ) ( )ˆ ˆ1
ˆ ˆvar 1

1
y y

y
Nf

N n
π π

π
−

= −
−

 ).   

 
11.  DISCUSSION 

The survey sampling literature has struggled to reconcile design-based and model-based 

theories of estimation/prediction.  Model based methods recently popularized by Valiant, 

Dorfman and Royall (2000), have a theoretical structure based on the prediction-based methods 

developed by Royall (1973,1976).  This structure is important, since it allows methods to be 

extended relatively easily to different applications with increasing complexity.  The limitation of 

the theory is that it does not account for the sample design.   

A similar theory has not previously emerged using design-based methods.  Instead, a 

mixture of approaches, such as GREG or calibration approaches (Sarndal, et al. 1992) have 
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been developed.  These approaches combine model-based and design-based ideas, or begin 

with ad-hoc functional forms of estimators, and optimize them in special settings.  These 

approaches have been successful in addressing many practical problems in a design-based 

framework.  However, they have not led to an approach that provides the consistent conceptual 

and theoretical base, or that can be readily extended to applications with increasing complexity.   

We have illustrated how the design-based random permutation model theory can be 

extended to include auxiliary variables in a straight forward manner.  These results extend the 

scope of the random permutation model theory to a broader class of problems.  Previous 

developments of the theory have identified subtleties in interpreting random effects in simple 

random sampling (Stanek, Singer, and Lencina (2004)) and developed predictors of realized 

random effects in balanced two stage sampling problems with response error ( Stanek and 

Singer, 2004).  Current research is extending these results to clustered population settings 

where clusters are of different size, and there is unequal probability sampling, and to settings 

where there is missing data.  In each case, the same basic approach is considered, with 

estimators (or predictors) developed based on a clear optimization theory.  

The present results illustrate how the theory can be used to account for covariates.  The 

fact that the results coincide with results developed by GREG or calibration approaches 

strengthens the appeal of the random permutation model approach as a design-based 

competitor to the model-based superpopulation theory.  Still, much more work is needed to 

extend the methods.  Extensions are being developed to more complex settings, including two 

stage designs with cluster and unit covariates, longitudinal studies, and settings where 

randomization of units to treatments.  We consider the basic results developed here to provide a 

foundation for additional work in these directions.   
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Figure 1.  Percent Change in MSE of Smoking 
Prevalence Estimates Accounting for Gender by 

Relative Risk of Smoking (N=100, n=25)
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Figure 2.  Percent Change in MSE of Smoking 
Prevalence Estimates Accounting for Gender by 

Relative Risk of Smoking (N=50, n=25)
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Appendix 1 Proof of result (11) and (12) 
 

 When there are p  auxiliary variables, a simultaneous random permutation model can be 

defined similar to (1) with ( )1 pvec=Z Y X X"  and ( )1p N+= ⊗G I 1 .  When Xµ  is known, 

let *
N=X P X , where ( )1 2 p=X X X X" .  The transformation can be represented as 

* =Z RZ , where N

p N

⎛ ⎞
= ⎜ ⎟⊗⎝ ⎠

I 0
R

0 I P
, and ( )( )*

1N p+=RG G 0  where ( )*
N Np

′′ ′=G 1 0 , and 

* =E RE .  The reparameterized model that incorporates the constraints thus has a form identical 

to Model (2).  To represent the SRS sampling, let 
( )( )

( )( )
1

1

p n n N n

p N nN n n

+ × −

+ −− ×

⎛ ⎞⊗
⎜ ⎟= ⎜ ⎟⎜ ⎟⊗⎝ ⎠

I I 0
K

I 0 I
, and thus the 

portioned simultaneous permutation model takes the same form of (3),  

* *
*

* *
I I

y
II II

µ
⎛ ⎞ ⎛ ⎞

= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

Z G
E

Z G
,  

where ( )I n np
′′ ′=G 1 0*  and ( )( )II N n N n p− −

′′ ′=G 1 0* .   

 A linear function of the random variables can be defined similar to (4), with 

( )1Np×
′′ ′=C c 0 , ( )1I I np×

′′ ′=C c 0  and ( )( )1II II N n p− ×

′′ ′=C c 0 . The estimator of *
II II′C Z  can then 

be defined as a linear function of the sample, *
I′w Z , where ( )y x

′′ ′=w w w , 

( )1 2x p
′′ ′ ′= "w w w w ,  is a ( )1 1p n+ ×  vector of coefficients.  With these, a linear unbiased 

minimum variance estimation can be derived by minimizing the function 

 ( ) { }* *
,2 2I I II II I II II λ′ ′ ′ ′Φ = − + −w w V w w V C w G C G .  
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Specifically, differentiating the above function with respect to w  and λ , and setting the 

derivatives to zeros results in the following estimating equations 

*
,

**

ˆ
ˆ

I II III I

II III λ

⎛ ⎞ ⎛ ⎞⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ′′ ⎝ ⎠ ⎝ ⎠⎝ ⎠

V CV G w

G CG 0
, 

where ( )*
I n np

′′ ′=G 1 0  and ( )( )*
II N n N n p− −

′′ ′=G 1 0 .  The unique solution is  

( ) ( )1
1 * * 1 * * * 1

, ,ˆ I I II I I I I II I I I II II

−
− − −⎧ ⎫′ ′ ′= + −⎨ ⎬
⎩ ⎭

w V V G G V G G G V V C .   (A.1) 

Since 1 1 1
,I n N

− − −= ⊗V Σ P , ( ),
1

I II n N nN × −
⎛ ⎞= ⊗ −⎜ ⎟
⎝ ⎠

V Σ J , 1
,n N n n

N
N n

− =
−

P 1 1  and 

1
,n n N n

Nn
N n

−′ =
−

1 P 1 , we have the following useful identities, ( ) ( )
1 1* 1 * 1

1 1I I I
N n

Nn

− −− −−′ ′=G V G u Σ u  with 

( )1 11 p×=u 0   and ( )
1

, 1
1

I I II p n N nN n
−

+ × −= − ⊗
−

V V I J .  Subsequently, (A.1) can be simplified as 

follows, 

( ) ( ) ( ) ( )

( )( )

11 1 1
1 1 1 1 1 ,

11 1
1 1 1 1

1 1ˆ

.

p n N n N n IIn N n

N n II
n n

N n n
N

N n n

−− − −
+ −× −

−− −−

⎧ ⎫⎡ ⎤′ ′ ′= − ⊗ + ⊗⎨ ⎬⎣ ⎦−⎩ ⎭
′⎛ ⎞⎧ ⎫′= − ⊗ + ⊗⎨ ⎬⎜ ⎟−⎝ ⎠⎩ ⎭

w I J u Σ u Σ u u P 1 1 C

1 c u 1 u Σ u Σ u 1
 

Since  
( ) ( )

( ) ( )

1 11 2 1 2 22
1

1 11 2 1 2

y Xy X Xy y Xy X Xy y Xyy Xy

Xy X
X Xy y Xy X Xy X Xy y Xy

σ σ σσ

σ σ

− −− − − −

−

− −− − −

⎛ ⎞′ ′ ′− − −′⎛ ⎞ ⎜ ⎟= =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟′ ′⎝ ⎠ − − −⎝ ⎠

σ Σ σ σ Σ σ σσ
Σ

σ Σ Σ σ σ Σ σ Σ σ σ
,  

( ) ( ) ( )
( )

( )

12 1
11 1 2 1

11 1 1 11 2 1

1 1y Xy X Xy

y Xy X Xy
X Xy

X Xy y Xy X Xy

σ
σ

σ

−−
−− − −

−−− −

⎛ ⎞′− ⎛ ⎞ ⎛ ⎞⎜ ⎟′ ′= − = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟− −′− − ⎝ ⎠ ⎝ ⎠⎜ ⎟
⎝ ⎠

σ Σ σ
u Σ u Σ u σ Σ σ Σ σ βΣ σ σ Σ σ

 

where 1
X Xy
−=β Σ σ .  Therefore, we have   

1

1
ˆ N n II

n n
N

N n n
−

⎧ ⎫⎡ ⎤⎛ ⎞′ ⎪ ⎪⎛ ⎞= − ⊗ + ⊗⎢ ⎥⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟−−⎝ ⎠ ⎢ ⎥⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

1 cw u 1 1β .   
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Consequently,  

( )

( )

( ) ( )

( )

*ˆ

11
1

I I

I I II N n I I x

I I I x

I I x

P

NY
N n

fY f Y
f

Y

−

′= +

⎧ ⎫′ ′ ′= + − −⎨ ⎬
−⎩ ⎭

⎧ ⎫′= + − − −⎨ ⎬
−⎩ ⎭

′= − −

C w Z

c Y c 1 β X µ

β X µ

β X µ

 

and  

   
( ) ( ) ( )

( )2 2

ˆvar

11 ,

I I I

yX y

P

f
n

ρ σ

′= + +

−⎛ ⎞= − ⎜ ⎟
⎝ ⎠

C w V C w
,  

where 2 1 2
0yX Xy X Xyρ σ−′= σ Σ σ  is the multiple correlation coefficient of Y on X .  

 


