An approach to estimation and prediction with response error under simple random sampling

Ruitao Zhang

1. Expanded model for response error attached to position.

 Expected Response: \(y_s \) for \(s = 1,\ldots,N \)

 Response: \(Y_{sk} = y_s + \omega_{sk} \) for \(k = 1,\ldots,r_s \) index of order of measure

 Assume \(r_s = 1 \) for all \(s = 1,\ldots,N \) so that \(k = 1 \). (1 measure of response)

 Assume \(r_s = m \) for all \(s = 1,\ldots,N \) so that \(k = m \). (m measure of response)

 Assume \(r_s = m_s \) for all \(s = 1,\ldots,N \) so that \(k = m_s \). (m_s measure of response)

 a. Does collapsed model lose information?
 b. Partially conditional expanded model.

2. Expanded model for response error attached to position.

 Expected Response: \(y_s \) for \(s = 1,\ldots,N \)

 Response: \(Y_{sk} = y_s \) for \(k = 1,\ldots,r_s \) index of order of measure

 Assume \(r_s = 1 \) for all \(s = 1,\ldots,N \) so that \(k = 1 \). (1 measure of response)

 Assume \(r_s = m \) for all \(s = 1,\ldots,N \) so that \(k = m \). (m measure of response)

 Assume \(r_s = m_s \) for all \(s = 1,\ldots,N \) so that \(k = m_s \). (m_s measure of response)

 a. Does collapsed model lose information?
 b. Partially conditional expanded model.