Recent News

Graduate students Ali Kiaghadi and S. Zohreh Homayounfar, with their professors Trisha L. Andrew, a materials chemist, and computer scientist Deepak Ganesan, will introduce their health-monitoring sleepwear “phyjamas” at the Ubicomp 2019 conference this week in London, U.K.

As Andrew explains, “The challenge we faced was how to obtain useful signals without changing the aesthetics or feel of the textile. Generally, people assume that smart textiles refer to tightly worn clothing that has various sensors embedded in it for measuring physiological and physical signals, but this is clearly not a solution for everyday clothing and, in particular, sleepwear.”

“We expect that these advances can be particularly useful for monitoring elderly patients, many of whom suffer from sleep disorders,” says Andrew. “Current generation wearables, like smartwatches, are not ideal for this population since elderly individuals often forget to consistently wear or are resistant to wearing additional devices, while sleepwear is already a normal part of their daily life. More than that, your watch can’t tell you which position you sleep in, and whether your sleep posture is affecting your sleep quality; our Phyjama can.”

This work was enhanced by Ganesan and Andrew’s affiliation with UMass Amherst’s Institute of Applied Life Sciences (IALS), which focuses on translating life science research into products that improve human health. Director Peter Reinhart at IALS says, “It’s exciting to see the next generation of wearable technology that is zero effort and addresses the issue of comfort and unobtrusiveness head-on. The data generated by fabric-based sensors have the potential to improve health and well-being, and could possibly contribute to the early diagnosis of multiple disorders.”

Sankaran ‘Thai’ Thayumanavan was appointed as a Distinguished Professor by the Board of Trustees. The title Distinguished Professor is conferred on select, highly accomplished faculty who have already achieved the rank of professor and who meet a demanding set of qualifications.

Chancellor Kumble Subbaswamy and Provost John McCarthy wrote,“Professor Thayumanavan’s research is focused on the design and synthesis of supramolecular assemblies with novel functions that advance chemical, materials and biological sciences in applications that range from molecular recognition to drug delivery to renewable energy. His work is distinguished by a focus on dynamics, creating materials with the ability to respond across multiple length and time scales and following exposure to stimuli including pH, temperature, and light.

He currently has grants that run several years into the future: an NIH grant with a 1.0 percentile score (amazing), an NSF grant as a CCI, an ARO MURI grant, and several other federal funded applications that are still running (an NIH R01, industrial sponsors) and many previous grants. This alone shows the longevity of his program and argues strongly for continued productivity.

Prof. Thayumanavan’s research program is characterized by prolific excellence. Since promotion to Professor in 2008, Prof. Thayumanavan has published over 120 articles, with more than 30 in the top tier of chemistry journals as lead author. In the same time period, he has garnered more than $26 million in external support. He has given more than 100 presentations on his research since 2008, including keynote addresses and prestigious lectures such as the Nanqiang lecture in Xiamen University (2014), and he was elected as a Fellow of the American Association for the Advancement of Science in 2011.”

A team led by UMass chemist Dhandapani Venkataraman, “DV,” and electrical engineer Zlatan Aksamija, reported in Nature Communications on an advance they outline toward more efficient, cheaper, polymer-based harvest of heat energy. “It will be a surprise to the field,” DV predicts, “it gives us another key variable we can alter to improve the thermo-electric efficiency of polymers. This should make us, and others, look at polymer thermo-electrics in a new light.” Aksamija explains, “Using polymers to convert thermal energy to electricity by harvesting waste heat has seen an uptick in interest in recent years. Waste heat represents both a problem but also a resource; the more heat your process wastes, the less efficient it is.”

DV and his chemistry PhD student Connor Boyle, with Aksamija and his electrical engineering Ph.D. student Meenakshi Upadhyaya worked in what DV calls “a true collaboration,” where each insight from numerical simulations informed the next series of experiments, and vice versa. The team turned to chemist Michael Barnes, a co-author on their recent paper, who used Kelvin Probe Force Microscopy to probe the dopants at the nano level and show that clustering is indeed present in polymers doped at room temperature, but not at higher temperatures.

The findings should provide a new path for designing more efficient polymers for thermo-electric devices. DV notes that until now, chemists and materials scientists have been trying to organize polymers to be more like the inorganics, “nicely aligned and very regular, which is difficult to do,” he adds. “It turns out that this may not be the way to go; you can take another road or another approach. We hope this paper provides a basis to move polymer-based thermo-electrics forward.”

The American Chemical Society showcased the ‘Phyjama’ developed by Trisha L. Andrew, chemistry, and presented at the ACS Spring 2019 National Meeting & Exposition. The ‘smart’ pajamas include monitors to help track sleep patterns, and could be available to consumers within a few years.

"Our smart pajamas overcame numerous technical challenges," says Trisha L. Andrew, Ph.D., who led the team. "We had to inconspicuously integrate sensing elements and portable power sources into everyday garments, while maintaining the weight, feel, comfort, function and ruggedness of familiar clothes and fabrics. We also worked with computer scientists and electrical engineers to process the myriad signals coming from the sensors so that we had clear and easy-to-understand information." 

Getting enough quality sleep can help protect people against stress, infections and multiple diseases, such as heart and kidney disease, high blood pressure and diabetes, according to the National Institutes of Health. Studies have found that quality sleep also increases mental acuity and sharpens decision-making skills. Yet most people do not get enough sleep — or the right kind. 

Upcoming Events

Prof. Joshua Sharp
The University of Mississippi
Thursday, October 17, 2019
Department of BioMolecular Sciences

“TBA”

Host:
Igor Kaltashov
11:30 am
1634 LGRT
Prof. Chunyu Wang
Rensselaer Polytechnic Institute
Thursday, October 24, 2019
Department of Biological Sciences

Structural Mechanisms and Drug Discovery in Alzheimer’s Disease

Host:
Jianhan Chen
11:30 am
1634 LGRT
Prof. Joseph Zadrozny
Colorado State University
Thursday, October 31, 2019
Department of Chemistry

“Spin-Bath-Control of Magnetic Relaxation in Metal Complexes”

Host:
James Walsh
11:30 am
1634 LGRT
Prof. Jianing Li
University of Vermont
Thursday, November 7, 2019
Department of Chemistry

“Cross Multiple Scales to Find Better Medicines”

Host:
Jianhan Chen
11:30 am
1634 LGRT
Prof. Feixia Chu
University of New Hampshire
Thursday, November 14, 2019
Department of Molecular, Cellular, and Biomedical Sciences

“Elucidating Conformational Space of Hsp90 Molecular Chaperone with Mass Spectrometry”

Host:
Igor Kaltashov
11:30 am
1634 LGRT